

Physics Scotland

Centre for EO Instrumentation

Compact Multi-Spectral Imager for Nanosatellites II

CEOI 11th Call

Stuart Bennett and Daniel Oi (PI)

CEOI Technology Showcase 24th June 2021

Agenda and team

- Aims
- Single Pixel Imaging
- Pushframe Imaging
- Prototype
- Results
- Future Steps

Scottish Centre of Excellence in Satellite Applications

University of Strathclyde Science

- Physics
 - Daniel Oi: Project manager
 - John Jeffers: Lead manager on design & simulation
 - Paul Griffin: Lead manager on experiment
 - Yoann Noblet: Experimental optics
 - Wojciech Roga: Former member, theory
- SoXSA
 - Malcolm Macdonald: Lead manager roadmapping
 - Steve Owens: User engagement, mission analysis
 - CeSIP (Centre for Signal and Image Processing)
 - Steve Marshall: Lead manager signal processing
 - Paul Murray: Co-manager signal processing
 - Stuart Bennett: Signal and image processing
- WideBlue
 - Barry Warden: Project manager
 - Craig Whitehill: Optical physicist
 - Callum Stewart: Mechanical engineer
 - Graeme Millar: Electronics design engineer
 - Ken Devlin: Software / firmware engineer
 - Niall Slater: Mechanical engineer

CMSIN aims

Implement and demonstrate a:

- compact suitable for smallsat constellations
- co-registered multispectral flexible and capable

- compressive sampling optically-reduced bandwidth requirement
- pushframe imager high SNR

Single-Pixel Imaging (SPI)

- Modulated spatial information captured by single pixel, *multiple patterns and exposures*
- Space-efficient, and simple electronics
- Imaging at wavelengths where 2D arrays expensive
- Can perform 100% sampling (Hadamard matrices etc.) or Compressive Sampling
- Potential for adaptive measurements

Pushframe Imaging

- Parallelizes exposure to reduce capture time
 - Multiple adjacent 1D Single Pixel Imagers
 - Overcomes sampling time limitation of conventional SPI
- Similar to pushbroom operation
 - Using a fixed pattern, along-track motion applies different mask columns to each scene-strip automatically
- Advantages over pushbroom
 - SNR improvement, particularly when read-noise limited
 - Compressive Sampling possible
 - 'Optical processing' enables adaptive operation

Pushframe in operation

Scene

Mask

A CONTRACTOR

Capture

Adaptive Sampling

Reduced data acquisition, low power monitoring

Simulated pushframe imaging with adaptive sense patterns

(a) Monochrome source image

(b) Acquired image, 2.3% of source

(c) Multi-spectral source image

Sense patterns adaptively chosen based on preceding "signatures"

Patterns can also mask out land/sea, reduce background light

(d) Acquired image, 1.5% of source

Pushframe demonstration

- First experimental demonstration of an optical pushframe camera
- COTS components
 - limited resolution (64x64)
 - limited optical performance
 - low 1D compression (2:1)
- Encouraging results
- Principle proved

Prototype

- Built around off-the-shelf components
 - simulated 1D optical integration pragmatic and allows analysis and diagnostics
- Fits in a 6U envelope
- Co-registered multi-spectral imaging
- LCD was chosen for:
 - compactness
 - good optical performance
- Interchangeable front telescope
- 'Field deployable'

Laboratory results

- First demonstration of co-registered multi-spectral imaging
- Good fidelity in both the visible and SWIR
- Maximum resolution of 256x256 pixels

Field trials

- First field results, under uncontrolled conditions, of a pushframe camera
- Good fidelity, similar to that achieved in the laboratory

NIR Si capability demonstration

- Demonstration of the multispectral capabilities of the device
- The (outline of the) text disc is apparent in the SWIR whereas it is "hidden" in the visible

Compressive sampling Compressive Sampling Compressive Sampling Using a Pus Stuart Bennett et al. https://arxiv.org/abs/2104.13085

Compressive Sampling Using a Pushframe Camera

- Demonstration of the prototype's flexibility
- Reduces data rate for storage and transmission
- Uses bespoke 2D 'columnar block' adaptation of binary 'noiselet' basis to achieve SPIlike performance
- 100%, 60%, 40% and 20% sampling rate
- Good fidelity at 40%
- Affecting image quality significantly at 20%
- CR selectable without changing mask (useful for pansharpening)

Future Steps

Technical

- Pushframe Algorithms
 - Columnar Compressive Sensing Theory
 - Multispectral Sampling and Reconstruction
 - Joint spatio-(hyper)spectral compressive sampling theory
 - Adaptive sampling development
 - Pattern development
 - Compressive detection and characterisation
- 1-D Optical Integration
 - Non-imaging optical system development
 - Multimode waveguide integrators
 - Free-form optics design
 - Diffractive optics design
- Spatial light modulator development
 - Optimisation of imaging optics onto SLM
 - Optimisation of SLM collection optics
 - MEMS SLM design, new concepts for pattern generation
- Sensor Development
 - On-chip 1-D integration
 - Low-power adaptive pushframe detection and characterisation
- Payloads and Missions
 - Satellite payload design
 - Mission design

Markets/Users/Application

- Novel applications of pushframe imaging
 - Non-EO applications, e.g. autonomous vehicles
 - Monitoring and detection mission development
- Markets
 - Ongoing research
- Users
 - New and continuing engagement

