

Nanostructured Ultra-Lightweight Lenses for Earth Observation

Thomas S. Nowack, Mitchell Kenney, James Grant, Danni Hao, David R. S. Cumming

Satellite optic – Design considerations & important metrics

Stability & Reliability

Weight

Compactness

i.e. CubeSat 1U →11.35cm x 10cm x 10cm

The structure of cubesat ESTCube-1

Kuuste, Henri, et al. "Imaging system for nanosatellite proximity operations." *Proceedings of the Estonian Academy of Sciences* 63 (2014).

(Vibrations, Temperature, Radiation, etc.) SpaceX, "Falcon User's guide", (April 2020)

Slavinskis, Andris, et al. "ESTCube-1 in-orbit experience and lessons learned." *IEEE aerospace and electronic systems magazine* 30.8 (2015): 12-22.

Performance

e.g. aperture size, efficiency, image acquisition time, image quality

Satellite optic – State of the art technologies

(Foldable) Au mirrors

- Medium to large apertures
- Good ratio weight \leftrightarrow area
- Only compact when folded
- Reflection imaging (larger volume)
- Moving parts (less robust/reliable)

Litix 300SR lens

© TH Swiss, Irix https://space.irixlens.com (last accessed 23/06/21)

Classic (bulk) optic

- Small to medium apertures
- Heavy, i.e. for large NA/aper.
 [250 g, aperture: 70mm]
- Bulky lens (Transmission)
- Comparably robust
- Very mature technology

Metasurfaces

- Previously only small apertures
- Ultra Lightweight
 - aperture 70mm→2.2 g (quick math)
- Ultra-compact (planar, Transmission)
- Robustness given by substrate
- Rich, ever advancing capabilities (multiplexing, achromatic, etc.)

MetaLens - Design and Physics - I

1. Choice of materials: Mech. Support (SiO₂), as thin as possible + active layer (a-Si), d \approx 0.5-1 λ (MWIR: 3300 nm, SWIR: 1064 nm)

2. Divide continuous surface into discrete, periodic lattice points (sub-λ spacing)

E-field confined in Pillars

Arbabi, Amir, et al. "Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays." *Nature communications* 6.1 (2015): 1-6.

MetaLens - Design and Physics (MWIR) - II

 $\label{eq:constraint} \begin{array}{l} \mbox{1. Choice of materials:} \\ \mbox{Mech. Support (SiO}_2), \mbox{ as thin as possible} \\ \mbox{ + active layer (a-Si), d} \approx 0.5-1 \, \lambda \\ \mbox{(MWIR: 3300 nm, SWIR: 1064 nm)} \end{array}$

2. Divide continuous surface into discrete, periodic lattice points (sub-λ spacing)

3. Simulate Transmitted Phase & Intensity as function of pillar diameter

4. Choose X Pillar dimensions that span phase-shifts 0-2π with high transmitted intensity

MetaLens - Design and Fabrication - I

MetaLens - Design and Fabrication - II

Huang, Tzu-Yung, et al. "A monolithic immersion metalens for imaging solid-state quantum emitters." *Nature communications* 10.1 (2019): 1-8.

MetaLens - Design and Fabrication - III

7. Generate pattern file for EBL:

- .txt file with lattice point (x,y), .gds Cell and Dose
 - 100x 1mm x 1mm areas (stiching)
- Sequential exposure of pattern pillar dimensions

Number of Elements ∞D^2 !

Aperture (A), mm	Focal length (f), mm	Number of elements	File Size	Time to calculate					
1	5	8'552'478	293 MB	Few hrs					
10	50	855'324'780	28.6 GB	2.5-3days					
Below after Code Optimisation (MWIR)									
5	5	8'864'385	311 MB	3m 29s					
10	10	35'445'295	1.24 GB	13m 58s					
20	20	141'733'709	4.98 GB	1hr 2mins					

8. Manufacture MetaLenses

Metasurfaces – Optical Testing SWIR Lenses– I Efficiency determination

	Av	veraged Pow	Efficiencies [%]			
Lens	Point A	Point B	Point C			
			Substrate	Metalens	Absolute	Relative
F#1	0.765	0.298	0.287	0.207	69.7	73.4
(10 mm)						
F#2	0.765	0.306	0.287	0.201	65.8	69.3
(10mm)						

Metasurfaces – Optical Testing SWIR Lenses – II focal Length and spot size

Achievements and conclusions of the project

1: Successfully designed & simulated highly efficient MetaLenses for SWIR (1064 nm) & MWIR (3300 nm)

2: Developed and optimised software for fast, large-area pattern generation compatible with commercial EBL technology

3: Developed and optimised manufacturing protocol for large area MetaLenses, incl. Quality Assurance

4: Experimentally confirmed close to diffraction-limited & highly efficient optical performance of manufactured MetaLenses

5: Demonstrated imaging with high spatial resolution (few μm) employing manufactured MetaLenses

Kenney, Mitchell, et al. "Large area metasurface lenses in the NIR region." *Modeling Aspects in Optical Metrology VII*. Vol. 11057. International Society for Optics and Photonics, 2019.

Thank you for your attention!

Any Questions?

M.Sc. Thomas Nowack – PhD candidate in MSCA "TeraApps" E-mail: thomas.nowack@glasgow.ac.uk

#UofGWorldChangers
f 9 @ UofGlasgow