OXFORD SPACE SYSTEMS

Development of a Novel X-band Cassegrain Deployable Antenna for SmallSats Platforms

UK EARTH OBSERVATION WEEK 2021

MICROWAVE MISSIONS, INSTRUMENTS AND TECHNOLOGIES SESSION

6TH-10TH SEPTEMBER 2021

JUAN REVELES

Oxford Space Systems | UK Space Cluster | Harwell OX11 0QR | United Kingdom

www.oxford.space explore@oxford.space

- > Current Focus of Deployable Antenna Development at OSS
- > System Description
- > Development Approach Toward a Flight Model
- > Design, Launch Environment and In-Orbit Perturbation Considerations:
 - > Design-Originated RF Losses
 - > Mechanical Considerations
- > Engineering Model Testing
- > Questions

CURRENT FOCUS OF ANTENNA DEVELOPMENT

- To maximize performance and cost efficiency, critical systems are designed to deploy in orbit
- Larger structures typically => higher performance
- The higher the stowage efficiency, the larger the deployed structure

- A variety of deployable space antenna architectures have been explored at OSS ranging from low frequency applications (IOT and AIS) to high frequency offset reflectors for telecommunications
- The current focus is the development of SAR antennas, Synthetic Aperture Radar
- SAR has been used extensively for Earth Observation for more than 30 years
- It provides high-resolution, day-and-night, weatherindependent images for applications ranging from Geoscience and Climate Change research to Security related imagery and Planetary Exploration
- The number of SAR systems operating from space have seen a significant rise in the past few years: 15 operational systems in 2013 to about 50 in 2021, many of them have been developed by private companies

Cassegrain WRA

Helicals

Offset Reflector

Yagi

Sub 1m Cassegrain

- Spaceborne SAR can monitor dynamics processes on the surface of the Earth in a reliable, continuous and global way
- It is based on a pulsed radar installed on a platform with a forward movement
- The radar transmits electromagnetic pulses of a given intensity and frequency and receives the pulses of the backscattered signal in a sequential way
- The swath on the Earth surface varies from 30km to 500km for spaceborne systems
- The backscattered pulse can be received by the same antenna in the case of monostatic SAR or by multiple receiving antennas in the case of a bi- or multi-static radar
- Amplitude and phase of backscattered signal depends on the physical and electrical properties of the imaged-object (eg roughness and permittivity)
- Penetration on the object depends on the frequency band

Frequency Band	Ка	Ku	X	С	S		Р
Frequency [GHz]	40-25	17.5-12	12-7.5	7.5-3.75	3.75-2	2-1	0.5-0.25
Wavelength [cm]	0.75-1.2	1.7-2.5	2.5-4	4-8	8-15	15-30	60-120
			SAR applic	cation			
Foliage penetration, subsurface imaging and biomass estimation						\checkmark	\checkmark
Agriculture, ocean, ice or subsidence monitoring			\checkmark		\checkmark	\checkmark	
Snow monitoring		\checkmark	\checkmark				
Very high resolution imaging							

SYSTEM DESCRIPTION

MS WRAPPED RIB ARCHITECTURE COMPONENTS

> Cassegrain Reflector Antenna system description

Hub and backing structure

Backing structure ribs

Secondary reflector deployment tower

Primary reflector mesh

Hold down and release + secondary reflector

WRAPPED RIB BB TESTING

Breadboard demonstrator complete :Q2, 2017

VIDEO 1

Commercial in confidence

DESIGN, LAUNCH ENVIRONMENT AND IN-ORBIT PERTURBATION CONSIDERATIONS

PRIMARY REFLECTOR SURFACE INACCURACIES

> RF target main drivers

- > Low surface and small shape imperfections
 - Higher quality radiation pattern and higher gain
 - Ideal paraboloid is a continuous doubly-curved surface

> The implementation challenge

- Approximated by facets
- > Facets created by two adjacent ribs
- > "Faceting" introduces surface errors
- > High surface RMS errors =lower gain
- Number of ribs dictated by how many can be accommodated on central hub

ORIGIN OF PRIMARY REFLECTOR FACETING

> Effect of backing structure architecture on RMS accuracy

ORIGIN OF PRIMARY REFLECTOR FACETING

> Effect of backing structure architecture on RMS accuracy

> Three main architectures considered:

Ring focused preferred as it minimizes reflection back to feed:

RAY PATHS IN RING FOCUSSED CASSEGRAIN (LEFT) AND GREGORIAN (RIGHT)

Low Frequency High Amplitude

Main engine cut-offs

- For example in the Delta II rocket , cut-off produces a transient at 120Hz which translates into a high acceleration input to the antenna
- > An example of engine cut-off-generated oscillations is shown in the following figure:

OXFORD SPACE SYSTEMS

Acceleration vs time on a SRB at the rocket bulkhead

Zoom-in reveals mainly sinusoidal content in the signal (Sine sweep)

18

OXFORD SPACE SYSTEMS

19

SINUSOIDAL SWEEP

VIDEO A,B,C

30/09/2021

ENGINEERING MODEL TESTING

ENGINEERING MODEL TESTING-HDRM AND HDRM & PRIMARY

VIDEO 2

VIDEO 3

QUESTIONS?

OXFORD SPACE SYSTEMS

CONTACT US:

Oxford Space Systems Electron Building Harwell Space Cluster Harwell OX11 OQR United Kingdom explore@oxford.space +44 (0)1235 567 999

FOLLOW US:

in Search for "Oxford Space"