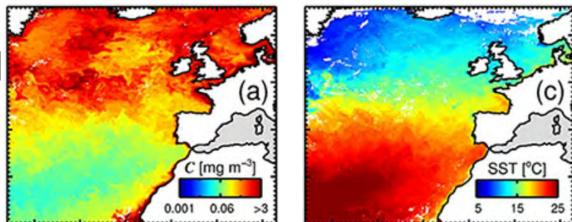


How healthy are our oceans?

CEO

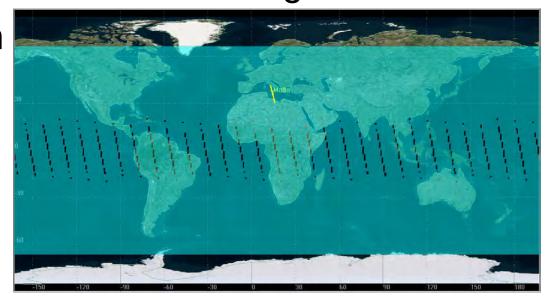
Contents

- Background
- Concept description
- Instrument
- Conclusion
- References


This work was funded by ESA under contract: 4000126005/19/NL/AI and conducted in partnership with the University of Exeter and the University of Leicester

Background

SURR


- Since the advent of the first ocean-colour and thermal sensors (e.g. CZCS and AVHRR) it has become clear that these two data streams can be used synergistically to understand the ocean [1]
- Additionally simultaneous estimates of sea skin temperature and ocean colour can help with retrievals in both data streams:
 - Emissivity in turbid waters [2]
 - Phytoplankton type retrievals [3-5]
 - Bio-physical feedback [6]
 - Air-sea gas exchange [7]

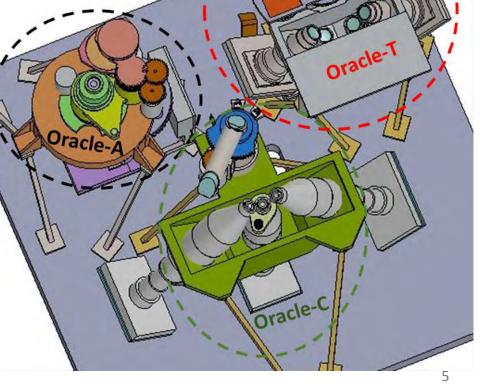


 Moreover better ocean colour product is obtained when atmospheric effects are removed using precise information about absorbing aerosols [8]

Concept description

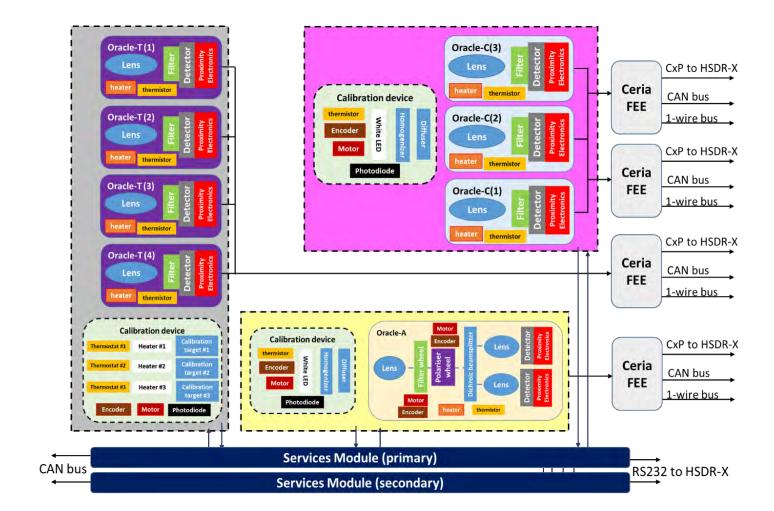
- Simultaneous retrieval of ocean colour, sea skin temperature and aerosol optical depth using a constellation of 16 microsatellites to provide 8 global daily accesses
- Tailored ECSS compliance
- Mission lifetime: 7 years
- Single satellite wet mass: 77kg
- SSO: 560km

SURRE


Instrument: overview

- Oracle instrument consists of three imagers:
 - Oracle-C: multi-spectral pushbroom colour imager
 - Oracle-T: multi-spectral pushbroom thermal imager
 - Oracle-A: multi-spectral polarimetric imager
- Each imager has its own internal calibration device

Parameter	Oracle-C	Oracle-T	Oracle-A
GSD (m)	100	300	900
Swath (km)	1152	1152	1152


Completed to initial design review level

SURRE

Instrument: architecture

surre

Instrument: modelled performance

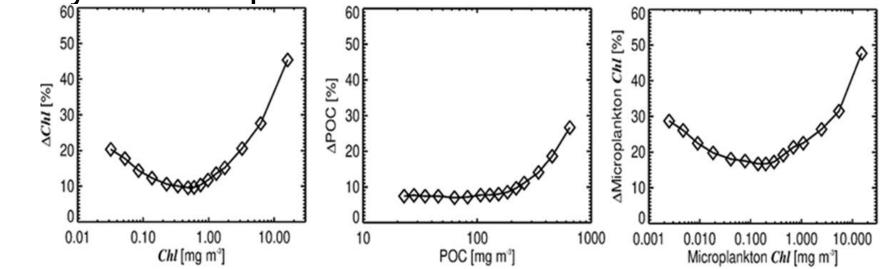
At this initial design level instrument performance meets all requirements

Parameter	Oracle-C		Oracle-T		Oracle-A		
	Requirement	Modelled	Requirement	Modelled	Requirement	Modelled	
GSD (at 560km SSO)	100m	100m	300m	300m	900m	900m	
Multispectral bands	8	8	3	3	11	11	
Min. MTF at Nyquist	0.1	0.17	0.1	0.12	0.1	0.31	
Min. SNR (visible)	400	468*	-	-	200	261**	
Min. SNR (IR)	400	574*	-	-	200	281**	
Max. NETD	-	-	0.2K	0.2K***	-	-	
Polarisation sensitivity	<0.05	<0.05	-	-	>0.95	0.97	
Radiometric accuracy	0.05	0.05	0.05	0.05	0.05	0.05	
Viewing angles	-	-	-	-	7	7	
Polarisation states	-	-	-	-	3	3	
*OLCI radiance levels							
**3MI radiance leve							

**3MI radiance levels

***Scene temperature of 300K

SÚRRE


Types of products

SURRE

© 2021 SSTL

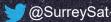
- The Chl concentration, POC concentration and microplankton Chl estimated using the ocean colour models:
 - OC3 (SeaWiFS) algorithm
 - Brewin Microplankton Chl algorithm
 - Stramski POC algorithm
 - a standard band ratio algorithm used by NASA
- Model parameters for OC3, Stramski and Brewin were varied by producing a Gaussian probability distribution and assumed 5% uncertainty in model parameters

Conclusion

- Development of Oracle concept to initial design review is complete, meeting all requirements
- User assessment indicates that the concept is useful in allowing better understanding of ocean health through examination of phytoplankton populations
- Requires constellation of 16 micro-satellites to provide 8 regular global daily accesses

References

	Title	Doc #	Date
1	Covariation of mesoscale ocean colour and sea-surface temperature patterns in the Sargasso Sea, McGillicudy et al	<u>doi.org/10.1016/S0967-</u> 0645(00)00164-8	2001
2	Retrieval of sea surface temperature from MODIS data in coastal waters, Cavalli et al	Sustatinability 9(11)	2017
3	Uncertainty in ocean-colour estimates of chlorophyll for phytoplankton groups, Brewin et al	doi.10.3389/fmars.2017.00104	2017
4	The Influence of Temperature and Community Structure on Light Absorption by Phytoplankton in the North Atlantic, Brewin et al	Sensors, 19(19)	2019
5	Temperature-correlated changes in phytoplankton community structure are restricted to polar waters, Ward et al	PloS one, 10(8)	2015
6	Biological control of surface temperature in the Arabian Sea, Sathyendranath et al	Nature, 349(6304)	1991
7	Basin-scale extrapolation of shipboard pCO_2 data by using satellite SST and ChI a, Ono et al	Int J. Remote Sens, 25(19)	2004
8	Atmospheric Correction of Satellite ocean-Color Imagery During the PACE Era, Frouin et al	doi.org/10.3389/feart.2019.00145	2019



Thank you

Further info: hrana@sstl.co.uk

© Surrey Satellite Technology Ltd

Tycho House, 20 Stephenson Road, Surrey Research Park, Guildford, Surrey, GU2 7YE, United Kingdom **Tel**: +44(0)1483803803 | **Fax**: +44(0)1483803804 | **Email**: info@sstl.co.uk | **Web**: www.sstl.co.uk

at 🧿 @surreysatellites

