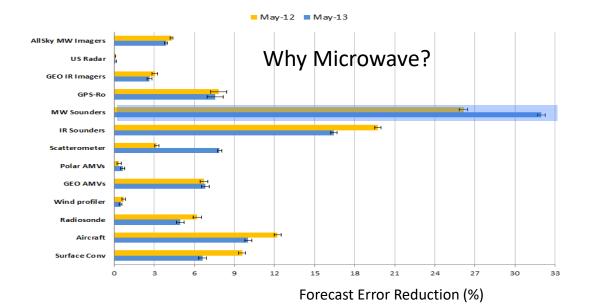


Hyperspectral Microwave Sounder Constellation of Nano Satellites for Climate Change and Mitigation

Manju Henry, Jacob Cunnison, Kai Parow Souchon, Ian Rule, Brian Ellison, Daniel Gerber, Rob King, Dave Tiddeman, Stuart Fox, Steve Parkes, Martin Dunstan, Mark Jarret, Janet Charlton & Niels Bormann

New Innovation
New Space

Outline

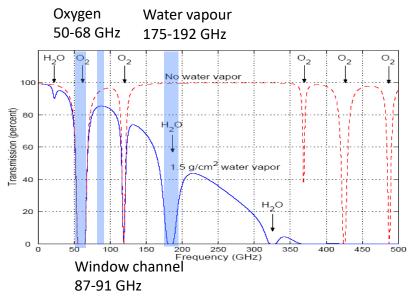

- ♦ Background
- ♦ Motivation
- ◆ Technology Readiness
- HYMS Airborne Demonstrator
- ♦ HYMS In-Orbit Demonstrator
- ♦ HYMS Future Outlook
- HYMS Mission Benefits
- ♦ HYMS CONCAM-Impact

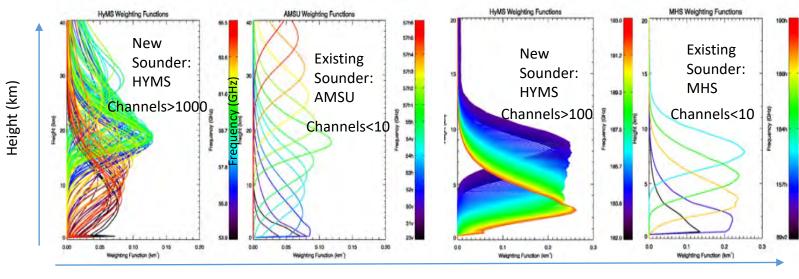
Background

- Global observations of temperature and humidity are needed under all-weather conditions to drive weather forecast models.
- Microwave observations are needed to provide cloud penetration.
- Most weather events happen in the order of hours.
- Severe weather events are a critical exception, usually cloud shrouded; key observables vary within ~15 km and ~30 minutes

NOAA20 satellite view of Europe showing a cloud cover over a period of 140 days.

The early sounders were seen in infrared. It has a major limitation, it can't see through clouds.




HYMS: Motivation

Hyperspectral sounding enables ultra-fine resolution temperature and water vapour profile retrievals

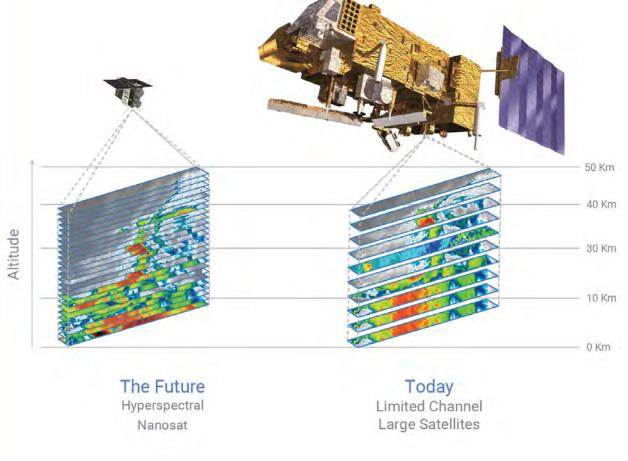
Oxygen (temperature) and water vapour (precipitation) sensing is a key element for weather forecasting.

Weighting Functions

HYMS uses 100s of detection channels

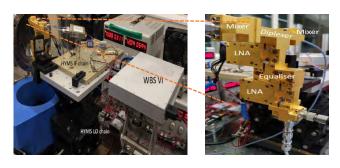
First-time demonstration of the benefits of increased vertical resolution microwave sounding

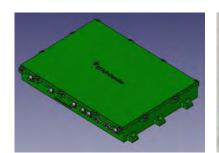
Enables accurate weather forecasting

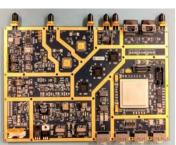


HYMS: Accurate Timely Weather Forecasts

Nanosatellite constellation of HYMS

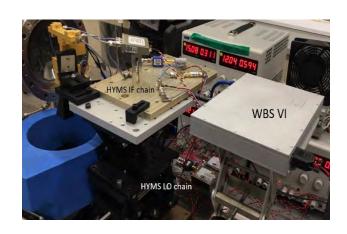



HYMS: Technology Readiness


- Ultra-low noise receivers operating at 54 GHz and 183 GHz were developed and demonstrated, leveraged on our MetOp SG receiver work ongoing at RAL Space.
- Radiometer system noise temperature <200K is achieved across the oxygen band (50 GHz-68 GHz). This is state-of-the-art
 performance for a room temperature atmospheric sounder of this type. Also, a system noise temperature <670K is achieved
 for the water vapour band (175-192 GHz)
- Wide-band ultra-high-resolution spectrometer (WBS-V1, 9.6 GHz BW, 1 MHz resolution) is also demonstrated. This new version gives a factor of improvement of 40 compared to the baseline (WBS-V)
- HYMS radiometers are miniaturised for nanosatellite accommodation without compromising performances

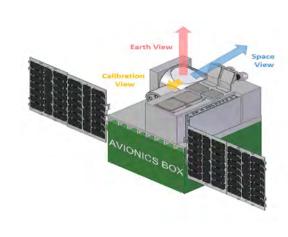
60 GHz Hyperspectral Lab Prototype System

Ultra-Wideband High-Resolution Spectrometer Instantaneous BW:9.6 GHz, spectral resolution 1 MHz



Not to scale

An example of MetOp SG Receiver and the miniature radiometer developed at RAL Space (patent filed). Volume is reduced by a factor of 50.


HYMS Technology Development Roadmap

HYMS Lab Demonstrator (2016-2018)

SERMON Airborne Demonstrator (2019-2021)

HYMS Nano Satellite Payload (2020-2023)

PI: RAL Space, STFC

Collaborators: UK Met Office, ECMWF, STAR Dundee, JCR Systems, GMV

Funding Support: CEOI & UKSA

