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An emerging technology

* The increased use of freeform optical surfaces is the result of developmentsin :

e THEORY : the theory of aberrations,

* COMPUTATION METHOD : techniques in optical system optimization,

e TECHNOLOGY : computation speed,

e MACHINING : precision fabrication of surfaces without symmetry,

e METROLOGY : Extensions to the range of the surface slopes allowed in optical testing
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Zemax — TrueFreeform Credit : microdevices.jpl.nasa.gov/

Kevin P. Thompson and Jannick P. Rolland, "Freeform Optical Surfaces: A Revolution in Imaging Optical Design," Optics & Photonics News 23(6), 30-35 (2012)
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Freeform surface — definition(s)

Freeform Optical Surface, Modern Definition (post-2000) :
An optical surface that leverages a third independent axis (C-axis in diamond turning

terminology) during the creation process to create an optical surface with as-designed
nonsymmetric features.

Kevin P. Thompson and Jannick P. Rolland, "Freeform Optical Surfaces: A Revolution in Imaging Optical Design," Optics & Photonics News 23(6), 30-35 (2012)



Benefits of freeform surfaces

Goals from industrial development
e Reduce number of components
* Increase functionality

* Cheaper system

* |Improved performance

Desired critical properties
e Size/volume/weight

* Field of view

* F-number/aperture/SNR

Duerr— 2018 - Workshop on Innovative Technologies for Space Optics
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Compactness | X
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Compactness

Freeform in space : TROPOMI (sentinel 5P) |[Fietd of view |x

Speed

The TROPOspheric Monitoring Instrument ~ Primary mirror
(TROPOMI) is the satellite instrument on
board the Copernicus Sentinel-5
Precursor satellite.
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very large field of view of 2600 km with a 7 km resolution
Freeform makes it a factor of 10 to 30 better and remains much

more constant over the field




Compactness

Freeform in space : Microcarb (2021)  [Fietd of view
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R. Geyl, E. Ruch, H. Leplan, F. Riguet, S. Lopez, "Precision space freeform optics for Microcarb: final report," Proc. SPIE 11487, Optical Manufacturing and Testing Xlll, 114870X (20 August 2020)



Compactness | X

CHIMA — Compact Hyperspectral Imager for Monitoring of ~ ELOIS - Enhanced Light Offner Imaging
Atmosphere Spectrometer

1000 Ip/mm Freeform
replicated grating
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Lunar Trailblazer (2024) — Lunar Thermal mapper
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e SIMPLEx (Small Innovative Missions for Planetary Exploration)

* Lunar Trailblazer will directly detect and map water on the
lunar surface to determine the form (OH, H20 or ice),
abundance, and distribution as a function of latitude, soil
maturity and composition

* Optical design by Rory Evans FOV : 9x9°, F/1.5, 100 m/pixel, 6-
100 um
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Compactness

Lunar Trailblazer (2024) — Prototype (2020) Field of View | X
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Lunar Trailblazer — Lunar Thermal mapper
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1.2mm deviation from BFS



Freeform based hYperspectral imager for MOisture [ tompactness
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Spectral resolution | 8 nm

Atmospheric spectrum

Slit Size 6 mm

Zemax prediction

Sensor Size 6x4 mm
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Research Council

Project blog : https://ukremotesensingtechnologycentre.wordpress.com/blog/



https://ukremotesensingtechnologycentre.wordpress.com/blog/
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Freeform based hYperspectral imager for MOisture Sensing (FYMOS)
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Freeform manufacturing

Diamond turning

Aspheric grinding

(glass)
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Freeform metrology

contact 3D profilometry
 Marh Optics - MFU 200 Aspheric 3D
* Panasonic UA3P

Non contact 3D profilometry
e Luphoscan (Taylor-hobson)

CGH (computer generated hologram)
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What next?

Space Optics TEchnology Centre (SOTEC)
National Infrastructure in Support of Space Enterprise

To facilitate and promote cooperation, collaboration, and coordination between space optics actors
in Academia, Research, and Industry.

To initiate and facilitate novel and innovative research challenges and accelerate impact.

To develop a strategic plan to scale up space optics manufacturing capability across the country.

To provide a forum for the community to speak collectively to funding bodies and standard agencies.
To promote the wider importance of optical design and manufacture capabilities in the UK.

To build a strategy for renewing the UK optical engineering capability through appropriate academic
training and industry placement schemes.
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