

TreeView

Precision Forestry to Tackle Climate Change

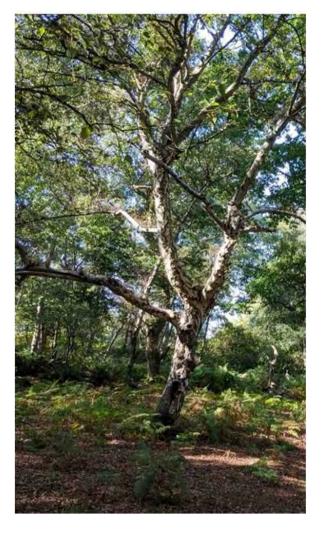
www.precision-forestry.org

Trees: pillars of nature-based solutions to climate change

Trees are the conduits for natural carbon transfer out of the atmosphere

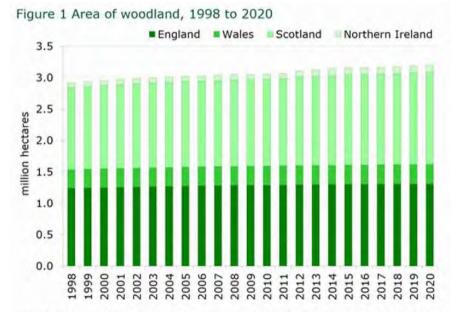
Tree-planting is a central tenet of policy responses from governments and organisations

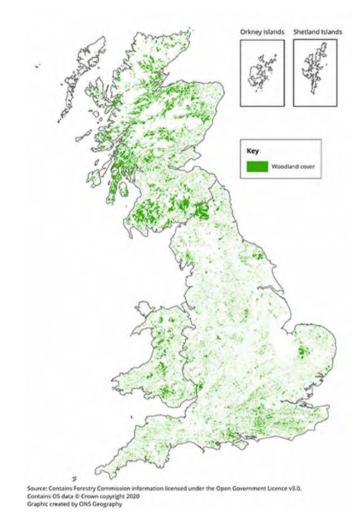
Tree are 'fundamental units' of ecosystems and plantings; require studies at the scale of individual trees


Increasing value is being placed on the role of trees in urban areas for climate, health and well-being roles

UK Treescape is valued at £130 billion

Valuations of trees and woodlands


- Asset value of woodlands (2017) = £130 billion
 Timber £8.9 billion (6.9%)
- 475 million visits to Woodland areas and 718 million hours (2017)
- 269 thousand tonnes pollutants removed £938 million saved in health costs (2017)
- 18 million tonnes carbon sequestered £1.2 billion (2017)
 4% of UK greenhouse gas emissions
- Urban woodlands cooled 11 city regions to save £229.2 million in labour productivity and avoided air conditioning costs (2018)


ONS 2020 – Woodland Natural Capital Accounts

Current distribution and trends

- Total tree and woodland cover: 3.7 million hectares
- Tree outside woodlands: 14 %

Source: Forestry England, Forestry Commission, Forestry and Land Scotland, Scottish Forestry, Welsh Government, Natural Resources Wales, Forest Service, National Forest Inventory.

GOAL: 12% land coverage by 2060 (180,000 ha in the next 20 years)

Threats

- Non-natives, pest and diseases
 - Non-native species cost to forestry £109 million (Williams et al. 2010)
 - Phytophora spp = £600,000 annually
 - Green spruce aphid = £3.6 million annually
 - Ash dieback total cost to Britain £15 billion over next 100 years (Hill et al. 2019)
 - 955 ash-associated species 71 at high risk from declines in Ash (Broome & Mitchell, 2017
- Climate change (Morison & Matthews, 2016)
 - Increasing range of pests and diseases
 - Greater frequency of drought, heat stress and waterlogging
 - Shifting tree species suitability ranges
- Increasing woodland fires (ONS, 2020)

TreeView: a new satellite mission to support the UK's response to tackle climate change

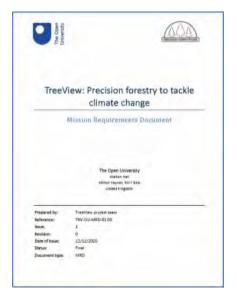
Through the UKSA National Space Innovation Programme, the OU has led a feasibility study for a new Earth Observation mission for tree-level studies from Space

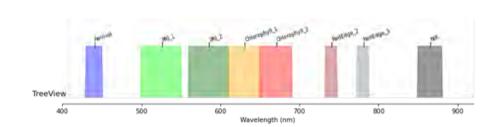
A 'Newspace' mission: we aim to fly a SmallSat for 5 years, for a total cost of £15m

For reference:

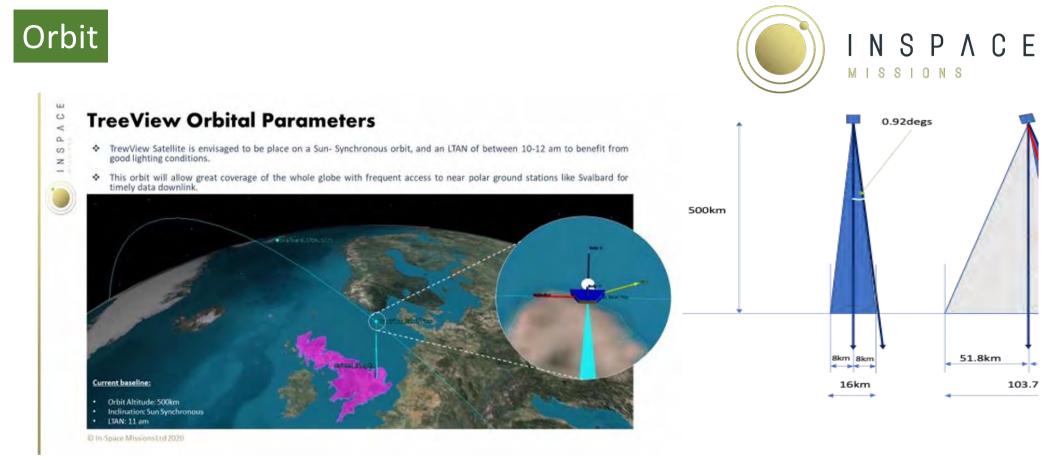
- ESA Scout "Newspace" missions are up to 30 M euro
- ESA Earth Explorers are ~ 100s M euro
- ESA Sentinels and Copernicus programme ~ 300 500 M euro

Primary Mission Objectives


Possibly the first fully UK-funded and developed science satellite mission


- To map and identify the species of UK's trees
- To monitor the green infrastructure of the cities and large towns across the UK
- To provide early warning of pest, disease, and climate stress on tree populations
- To provide space-based observation of large field-based climate change experiments (e.g. BIFoR FACE) and forest monitoring sites (e.g. Alice Holt)
- To image other countries of interest such as China, Australia, Brazil and cities such as Hong Kong, Singapore, Auckland when UK is under cloud cover

Mission requirements


• Precision forestry: 'the use of advanced technologies for a more granular data capture and management'

Requirement	Target	Outcome
Ground Sample Distance	2 m	2 m
No. of spectral bands	6 - 10	8
Bandwidths	10 – 40 nm	15 – 50 nm
Swath	> 40 km	> 16 km (104 km)
Full UK Coverage	1 per year	Every 6 weeks
Repeat Coverage (spring – summer)	10 x for target locations	15
SNR	> 100	> 100

The Open University


Orbit selected: Sun Synchronous, 501km, 11:00 LTAN, Local pass time over UK ~10.25am

Assumed off-nadir pointing capability of 5 degrees from nadir with a 16km swath on the ground.

Spacecraft

- In-Space's modular Faraday-2G
 - Total mass less than 100 kg
 - Volume within 800 x 800 x 250 mm + PL
- 800mm by 800mm payload deck:
 - Optical payload
 - Star trackers
 - Sun sensors
 - S-Band and X-Band antennas
- Spacecraft platform development and qualification due to complete in 2021 under an ESA/UKSA contract
- Compatibility with an extensive range of launch vehicles

Payload – Optics and Focal Plane Array

Telescope

Telescope baseline is an off-axis Three Mirror Anastigmat with a folding mirror shown below:

Detector Plane Flexure

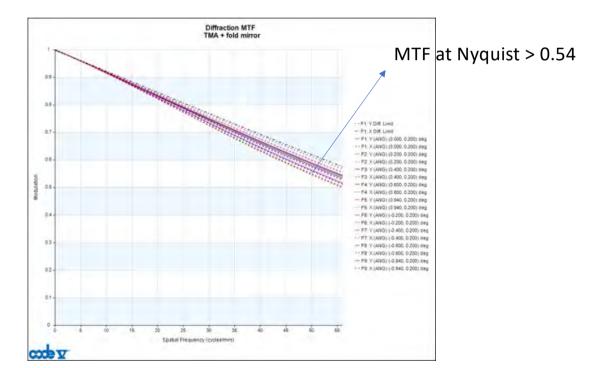
Mass: < 30kg

Height from the mounting feet: 492 mm Width: 694 mm (734 mm inc. FPA box)

Materials

Item	Material
Mounting Feet and Brackets	Titanium Ti-6Al-4V
Structural Panels	CFRP Skins and Aluminium Honeycomb
Baffles and aperture	CFRP
FPA	Titanium Ti-6Al-4V (Housing)
Mirrors	Zerodur (Aluminium coating)
Mirror Mounts	Titanium Ti-6Al-4V and Aluminium
Door	CFRP

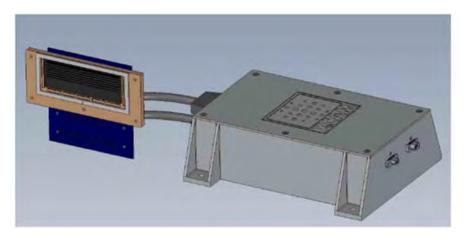
Opening


Payload – Thermal Modelling and Optical Performance

Telescope Thermal Limits:

	Tmax (°C)	Tmin (°C)
FPA (Hot)	0.5	-3
FPA (Cold)	-1	-5
Structure (Hot)	-4	-7
Structure (Cold)	-6	-9
Non- operational	-10	-27

Optical Performance:



MTF plot for the edge of the along-track Field of View as-designed.

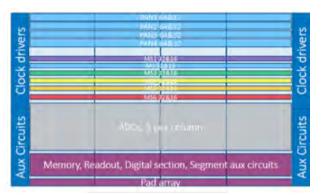
Payload – Camera Electronics and Data Handling Unit

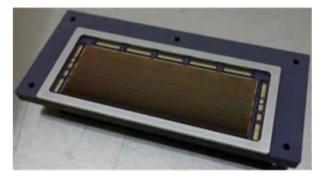
- Camera Sub-System
 - FPA Focal Plane Array
 - Detector
 - Optical Filters
 - Mechanical/thermal mounting
 - Temperature sensor
 - FEE Front End Electronics
 - Detector power and control
 - Generation of image tiles and strips from raw data
 - FPA Temperature control (operating temp)
 - Telescope Temperature Control
 - Payload Data Handling Unit

Detectors

Baseline – Teledyne e2v CIS125 developed with CEOI funding

- Up to 8 bands available
- 8k columns @ 2m GSD, 16 km swath




Payload – Detector

Multi-Spectral Time-Delay and Integration CMOS Image Sensor CIS125

	CIS125	TreeView Use
Panchromatic Channels	4 Pan channels each made up of 2 sub arrays	2 Pan channels both sub- arrays (A & B)
MS Channels	6 MS channels each made up of 2 sub arrays	6 MS channels only sub- array A
Pixel Pitch	5 μm Pan, 10 μm MS	Pan pixels binned 2x2 in the FEE
Number of pixels	Pan: 16k columns 64/32 lines MS: 8k columns 32/16 lines	
Full Well Capacity (per pair)	Pan: 60 ke- MS: 240 ke-	Pan: 60 ke- MS: 120 ke-
Max. Line Rate	30 klines/s	7000 lines/s 3500 lines/s
Read-out speed	2.0 Gbits/s per output	2.8 Gbits/s for the whole device!

Data Estimates

Example 1 : Longest continuous strip – 1000 km Req: TV-SCI-06-M

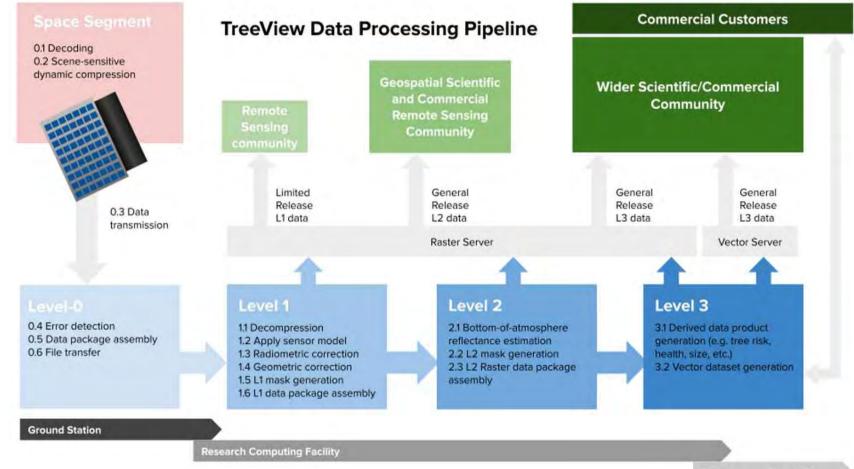
~50 GB in a 143 s track

Example 2 : Entire coverage of the UK Req: TV-SCI-04-M

~ 790 GB

Example 3 : Total area of ten major UK cities (10 x per year) Req: TV-SCI-05-M

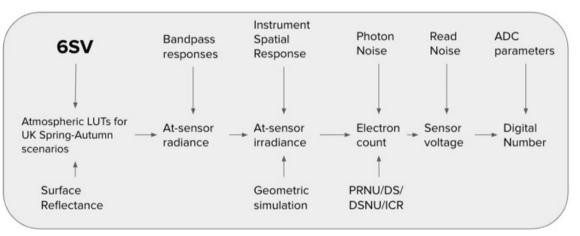
~360 GB in 5 years

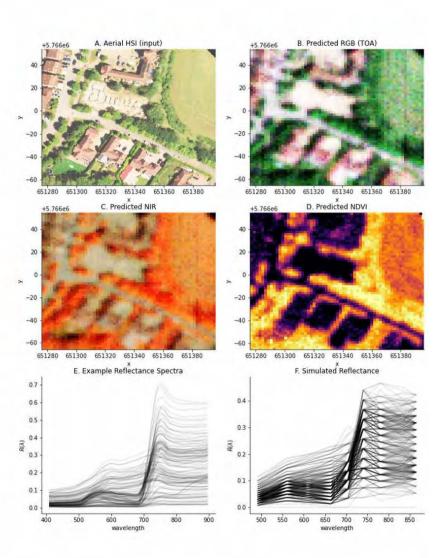

Requirement	Revised Value	Data
Entire coverage of the UK	8 times per year	~ 6.4 TB / yr
Ten Target Cities	15 times per year	~ 540 GB / 5 yrs

Imaging Capacity	GB	km²
Daily	504	166,000
Annual	184,000	60,000,000
Lifetime	920,000	3,000,000,000*

* twice the global land surface area

Data Processing

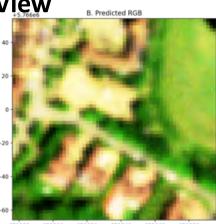

Cloud computing service


TreeView simulation work

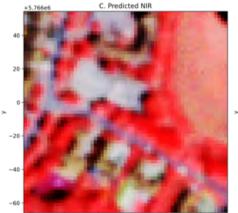
Joseph Fennell (OU)

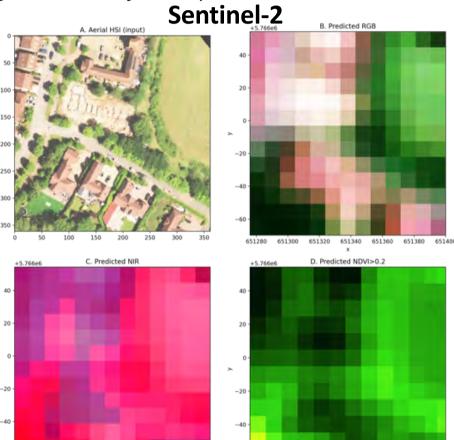
Simulation pipeline based on real-world scenarios; scene reflectance from hyperspectral airborne data (2Excel-geo)

Urban areas and rural woodland



Vegetation indices at 2 m GSD


We have simulated data from Milton Keynes, and compared to equivalent 10 m simulations (Sentinel-2) TreeView won't produce RGB images; these are for comparison

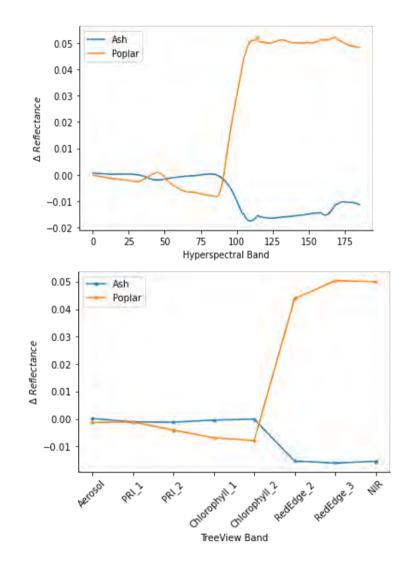

651280 651300 651320 651340 651360 651380

D. Predicted NDVI>0.2

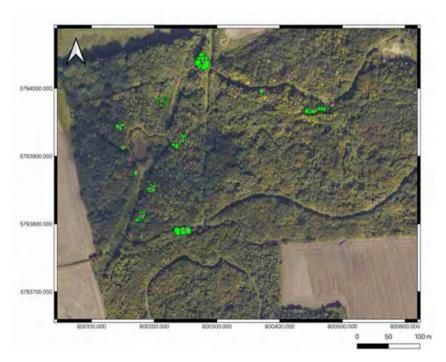
651280 651300 651320 651340 651360 651380

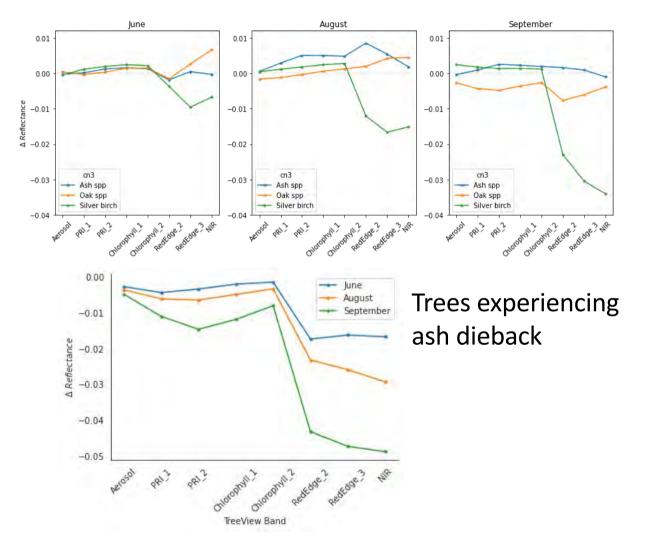
651280 651300 651320 651340 651360 651380

651280


651280 651300 651320 651340 651360 651380 651400

651300 651320 651340 651360 651380


Discriminating between species


Location of tree species, Treezilla citizen science database

Temporal information and disease impacts

Summary

- A feasibility study into a SmallSat mission with a new multispectral payload has been conducted
- The system can achieve 2 m GSD from 8 bands in the VIS-NIR
- The aim is for full UK coverage in a year, with off-pointing to achieve repeat visits of key sites
- Build up a comprehensive characterisation of the UK Treescape during mission life time
- End to end simulation pipeline is being used to explore the science and application potential