Lidar for HAPS – Towards 3D Lidar from Near Space

Software Defined Multifunction Lidar

Peter Kightley

Introduction: QinetiQ

Introduction: Software Defined Multifunction LIDAR (SDML)

What is LIDAR?

- Like radar but using light.
- Many different types:
 - Range finding, 3D imaging.
 - Velocimetry, vibrometry, anemometry.
 - Optical comms, retro-comms.
- Fundamentally, what discriminates them?:
- The mod-demod scheme.
- One or two schemes are 'hard-wired' into conventional LIDAR systems.

• What is SDML?

- Mod-demod abstracted into software.
- Switch between sensing modalities at run time.
- Allows many modes in a single payload.

Introduction: Software Defined Multifunction LIDAR (SDML)

QINETIQ

Introduction: Software Defined Multifunction LIDAR (SDML)

SDML: HAPS-Based Earth Observation Capability

SDML for High Altitude Pseudo Satellites (HAPS)

AIRBUS DEFENCE & SPACE

THALES

SDML: Earth Observation Capability Maturity

Capability / Maturity	Comment
3D imaging/mapping.	Mapping, planning, biomass monitoring, precision agriculture, disaster/damage assessment.
2D vis/NIR imaging	Conventional aerial imagery, NDVI imagery.
Vibrometry.	Stand-off seismology.
High bandwidth optical comms.	GBit+ covert, secure, bidirectional comms.
Retro-comms.	Comms 'tags' for unattended ground sensors.
HAPS integration	Environmental testing of components & sub-assemblies successful, initial airframe integration successful.

SDML: Optical Schematic

SDML: Hardware

SDML: 3D LIDAR Mode Design Considerations

- Requirements
 - Good cross-range resolution.<</p>
 - Good down-range resolution.
 - Good fill factor.
 - Good SNR margin on target.
 - High positional accuracy.
 - − Rapid scan. <---</p>
 - − Full waveform. <</p>
 - Photo overlay.
 - − Data recovery. <</p>
 - Exploitation software.

Solution

- Diffraction limited beam.
- Flexure-mounted, voice-coil actuated scanner.
- Pulse compression with high timebandwidth product.
- Best-in-class GNSS/INS + image-based scene stabilisation.
- Vis+NIR FPA. -
- Optical comms mode.
- Optional high-bandwidth RF comms.
- Commercial solutions available!

SDML: Summary (To Date!)

- SDML concept is proven:
 - Quantum limited sensitivity lidar;
 - No performance penalty with multi-mode.
- All sensing modes under development:
 - Various levels of maturity;
 - Comms demonstrated;
 - 3D lidar funding opportunity being pursued.
- Next steps:
 - Continue maturing sensing modes;
 - Interoperability with Dstl OGS?
 - Plan for flight trials 2022.

QINETIQ

- Contact:
 - Peter Kightley
 - pdkightley@qinetiq.com
 - 01684 543782

