School of Electrical and Electronic Engineering FACULTY OF ENGINEERING

Development of Advanced Terahertz Optics using Liquid Crystals & Additive Manufacturing

Alexander Valavanis, University of Leeds <u>a.valavanis@leeds.ac.uk</u>

Overview

- •"Supra-Terahertz" radiometry and components
- Additively manufactured optics
- Liquid-crystal adaptive optics

Terahertz (THz) radiation

The KEYSTONE satellite concept

Designation	Band Centre	Primary Species	Secondary Species	
Band 1	4.7 THz	0	O3	
Band 2	3.5 THz	OH	CO, HO ₂	
Band 3	1.1 THz	NO, CO	H ₂ O, O ₃	
Band 4	0.8 THz	O2	O3	

Supra-THz optics (or lack of)

RF techniques (reflectors, waveguides etc) ultra-high precision needed for THz

Optical techniques (lenses, fibres etc) High diffraction; few materials available at THz frequencies!

New THz manufacturing techniques

Additive manufacturing ("3D printing") of custom optical components

Liquid crystal-based devices for adaptive and controllable optics

Additive manufacturing

Material & process selection

Wide range of established AM processes available

Photocurable polymers vs thermoplastics...

Thermoplastics

Previous studies limited to < 2 THz. **PP/PE** give lowest absorption for fused-filament fabrication (FFF). Challenging to print PP!

Busch et al., *J. IR mm & THz waves*, **35**, p. 993 (2014)

Photocurable inks

Previous studies limited to < 2 THz. Inkjet printing/Vat polymerisation are very reliable processes. **Much higher** absorption coefficients though!

Supra-THz material analysis

THz time-domain spectroscopy (TDS) First AM material study over 6 THz bandwidth

Supra-THz material comparison

PP much lower loss than acrylics (4.3 dB/mm vs >21 dB/mm at 3 THz)

1.49 refractive index

Process evaluation

(a) FFF printed PP shows coarse hatching(b) Inkjet acrylics give smooth but rounded features

Process evaluation (2)

DLP processed acrylics give best print resolutions features down to < 50 μm

1.6 µm surface roughness

Exemplar AM optics

Exemplar THz Fresnel lens structures (1-mm groove pitch) fabricated

Liquid crystals

Classic LC materials

Many materials studied below 2 THz.

Commercial "E7" mixture gives good birefringence.

	Material	Frequency/THz	n.	n _e	Δn	Ref.
	5CB	0.7-2.54	1.8~2.1	2.02~2.28	0.1~0.2	[1]
ĺ		0.1-0.8	1.62~1.67	1.75	0.08~0.13	[2]
Ì		0.5-2.0	1.57~1.6	1.69~1.7	0.10~0.12	[3]
	6CB	0.1-0.8	1.62~1.65	1.72	0.07~0.1	[2]
	7CB	0.1-0.8	1.58~1.6	1.70	0.1~0.12	[2]
		0.5-2.0	1.55~1.58	1.68~1.69	0.11~0.13	[3]
	E7	0.2-1.2	1.59~1.68	1.8	0.12~0.21	[4]
		0.2-2.0	1.55~1.57	1.7	0.13~0.15	[5]
	PCH5	0.7-2.54	1.4~1.55	1.4~1.5	~0.05	[1]
		0.5-2.0	1.59~1.61	1.51~1.56	0.05~0.08	[3]
	PCH7	0.5-2.0	1.59~1.61	1.51~1.56	0.05~0.08	[3]
	5OCB	0.5-2.0	1.60~1.63	1.73~1.74	0.11~0.13	[2]
	3CHBT	0.5-2.5	1.513~1.545	1.604~1.627	0.08~0.09	[6]
	4CHBT	0.5-2.5	1.487~1.531	1.593~1.617	0.09~0.1	[6]
	5CHBT	0.5-2.5	1.482~1.531	1.613~1.635	0.11~0.13	[6]
	6CHBT	0.5-2.5	1.480~1.516	1.569~1.599	0.08~0.09	[6]
	7CHBT	0.5-2.5	1.505~1.532	1.582~1.592	0.6~0.8	[6]
	8CHBT	0.5-2.5	1.538~1.560	1.606~1.627	0.07	[6]
	9CHBT	0.5-2.5	1.518~1.547	1.583~1.600	0.05~0.06	[6]
	10CHBT	0.5-2.5	1.467~1.489	1.546~1.565	0.07~0.08	[6]
	11CHBT	0.5-2.5	1.471~1.490	1.542~1.559	0.07	[6]
	12CHBT	0.5-2.5	1.471~1.489	1.538~1.556	0.07	[6]

[1] T. Nose, S. Sato, K. Mizuno, J. Bae, and T. Nozokido, Appl. Optics 36, 6383 (1997).

[2] R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, J. Infrared Millim. Terahertz Waves 30, 1139 (2009).

[3] N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Infrared Millim. Terahertz Waves 31, 1312 (2010).

[4] C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, Opt. Express 12, 2625 (2004).

[5] C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. L. Pan, J. Opt. Soc. Am. B-Opt. Phys. 27, 1866 (2010).

[6] U. Chodorow, J. Parka, and K. Garbat, Liq. Cryst. 40, 1089 (2013).

LC cell design

THz transparent materials needed! Substrate - fused quartz Electrodes - PEDOT:PSS conductive polymer Alignment layer – polymide Spacer – Melinex® (polyester film)

LC cell fabrication & test

Optical measurements show uniform LC structure & strong response to applied field

THz TDS analysis

All materials THz transmissive up to >4.0 THz Birefringence ~0.2 as expected

Electric field effects

All materials THz transmissive up to >4.0 THz Birefringence ~0.2 as expected

THz modulation study

Large controllable transmission at 3.5 THz (up to 50%) ~1 s response achievable with thinner device

Summary

Conclusions

THz compatible AM materials & processes identified (separately!)

"E7" LC material provides good birefringence at > 2 THz

Exemplar LC device allows >50% 3.5-THz power modulation

Next steps

Test emerging AM technologies; reflectors, calib. targets etc...

High-birefringence materials; fast multi-layer modulators

Spatial-light modulators; adaptive optics; metasurfaces...

Funding: CEOI 10th Call Fast Track; UK Space Agency NSTP Fast Track & Pathfinder programmes; UKRI Future Leaders Fellowship

Leeds: A. Dunn, Z. Zhang, E. Nuttall, M. Horbury, Y. Han, S. Kondawar, E. Zafar, N. North, L. Li, M. Salih,
E. H. Linfield, A. G. Davies, E. Saleh, R. Harris, H. Gleeson
RAL Space: B. N. Ellison, D. Pardo, M. Oldfield,
N. Brewster, N. Daghestani, H. Wang, M. Henry