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Responsive Space:

The capability of space systems to respond to uncertainty
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Distributed RF Apertures
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Synthetic Aperture Radar (SAR)
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 Traditional Monostatic SAR

 Transmitter and Receiver 

collocated. 

 Virtual antenna synthesized 

(length L) to increase 

azimuth resolution.
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Synthetic Aperture Radar (SAR)
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 Bi/Multistatic SAR

 Transmitter and Receiver 

spatially separated. 

 β – Bistatic angle
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Measurement diversity is key to understanding complex targets.
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 Full exploitation of such a system requires development of novel signal processing 

techniques and creation of target signature databases.
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Figure taken from [1] Electronic Warfare and 

Radar Systems Engineering Handbook. 



Hardware requirements: Small SAR satellite
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Mass and size limits provide fundamental limits on:

 Antenna area (αGT and GR )

 Maximum average power available (Pavg)

Drives system trades to optimize 

for KPIs such as SNR, range 

and azimuth resolution.
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Hardware requirements: Coherent cluster
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 Coherent integration is only possible if the entire system, including propagation 

paths, is stable to a small fraction of the RF wavelength on the scale of an aperture.  

Requires:

 Very precise position and time measurement

 Stable frequency references

 Means of relating time between sensors 

 For an X-band system, using ~λ/10 as a conservative estimate for coherent 

combination

 Time measurement precision ~10ps

 Position measurement precision ~3mm

 Sync links enable time and coherence transfer between platforms.
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Processing and Exploitation Workflow
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Processing: Bi/Multistatic Image Formation
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 Various IFPs are commonly used for 

monostatic SAR:  Polar Format Algorithm 

(PFA), Range Doppler (RD), Chirp Scaling 

Algorithm (CSA) and Back Projection 

Algorithm (BPA).

 Assumptions:

 Isotropic point target scattering model

 Simple linear forward model

 Simplified inversion, e.g. IFFT

 Appropriate for monostatic small angles, 

however for geometrically diverse, sparsely 

sampled apertures may need a new approach. 

E.g. Bayesian inference.
© Crown copyright 2021 Dstl 



Processing: Increased resolution 
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• Resolution of a SAR image is given by the 

extent of the k-space support.

• It is possible, by selecting specific 

acquisition geometries of a pair of 

coherent platforms, to extend the k-space 

support and hence resolution in either 

range or azimuth without changing Tx

bandwidth.

• Useful in areas of congested spectrum or 

in resource management of a distributed 

system.

• Assumes target persistence throughout 

collection aperture.

© Crown copyright 2021 Dstl Imagery taken from [3] Goh, A. 2012



Processing: Single Pass 3D Point Cloud
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 As for along track aperture, 

synthesize a vertical aperture 

using multiple platforms to resolve 

scatterers in height.

 3D volumetric image can be 

created using a tomographic 

approach to image formation.

 Prominent scatterers can be 

extracted from volumetric image to 

generate 3D point cloud product.
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Exploitation: Bistatic/Multistatic SAR
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Automatic Target Recognition (ATR)

Figures taken from [4]. Woollard et al. 2020

Divergence from monostatic SAR

 Illumination and reconstruction 

shadows.

 Difference in scattering mechanisms.

 Difference in clutter processes.

Challenges

• Lack of representative training data 

sets

• Lack of validated simulated data

• Lack of validated bistatic clutter 

models. 

• Large parameter space.
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Exploitation: 3D Point Cloud 
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Automatic Target Recognition (ATR)

 LIDAR work has shown 3D target recognition to 

be superior to 2D ATR as extracted features are 

less dependent on target pose changes. 

 Requires data to be collected in a single pass –

impossible with traditional SAR constellations. Image from [8] Kechagias-Stamatis et al. 

2019 

Urban area intelligence

 Urban SAR data can be difficult to interpret given strong dihedral/trihedral 

returns and large amounts of layover.

 3D point clouds of urban areas would vastly increase interpretability of data in a 

more timely fashion than a typical SAR constellation.

© Crown copyright 2021 Dstl 



Architecture and workflow
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Space Segment
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 Data downlink is a huge challenge

 Complex Raw SAR data leads to large 

volumes.

 Unclear where data fusion should occur, 

image domain/frequency domain.

 Spacecraft Housekeeping

 Orbit position data

 Payload data

 Telecommand reception status
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Cognitive Radar
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Radar system that can perform online learning, execute better actions 

and adapt operational parameters to suit its environment.

Cloud

Edge Nodes

Users

 First level on board 

processing feasible with GPU 

and FPGA advances.

 Transition of processing to 

edge nodes on platform.

 Automated resource 

management.

 Only move data that is 

required to lower data 

overhead.
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Summary and Conclusions
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 Advances in technology and the adoption of a new space approach to production mean 

that reasonably capable small sat SAR systems can be placed in orbit for a fraction of 

the cost of a large monolithic system.

 Coherent, distributed SAR systems offer many potential advantages over monolithic 

systems.

 Rapid rate of technology development has somewhat outpaced the signal processing 

and phenomenological understanding that supports maximum exploitation of a 

distributed SAR system.

 Need to ensure that ground architecture put in place is flexible, scalable and able to 

evolve to ensure a smooth transition path of exploitation techniques from bench to asset.
17

© Crown copyright 2021 Dstl 



References

OFFICIAL

18

[1] Electronic Warfare and Radar Systems Engineering Handbook, 2013, Naval Air Warfare Center Weapons Division, 

California.

[2] Shahzad, M., Zhu, X., Robust Reconstruction of Building Facades for Large Areas Using Spaceborne TomoSAR

Point Clouds. 2015, IEEE Transactions on Geoscience and Remote Sensing. 53(2), pp752-769.

[3] Goh., A. 2012 Bistatic Synthetic Aperture Radar Data Processing and Analysis. PhD Thesis. University of Adelaide.

[4] Woollard, M., Ritchie, M. and Griffiths, H. Investigating the effects of bistatic SAR phenomenology on feature 

extraction. 2020 IEEE International Radar Conference (RADAR), 906-911, DOI:10.1109/RADAR42522.2020.9114766.

[5] Laubie, E. Aspect diversity for bistatic Synthetic Aperture Radar.  Doctoral Thesis, 2017, University of Dayton.

[6] Carrara, W., Goodman, R, Majewski, R. Spotlight Synthetic Aperture Radar Signal Processing Algorithms, Artech

House, London, 1995.

[7] Gurbuz, S., Griffiths, H., Charlish, A., Rangaswamy, M., Greco, M., Bell, K. An Overview of Cognitive Radar: Past, 

Present and Future. 2019. IEEE Aerospace and Electronic Systems Magazine. DOI: 10.1109/MAES.2019.2953762

[8] Kechagias-Stamatis, O. Aouf, N. A New Passive 3D Automatic Target Recognition Architecture for Aerial Platforms. 

2019, IEEE Transactions on Geoscience and Remote Sensing. 57(1), pp406-415.

© Crown copyright 2021 Dstl 



Discover more

OFFICIAL

19

© Crown copyright 2021 Dstl 

https://github.com/dstl
https://github.com/dstl
https://twitter.com/dstlmod
https://twitter.com/dstlmod
https://www.linkedin.com/company/dstl/
https://www.linkedin.com/company/dstl/
https://www.gov.uk/government/organisations/defence-science-and-technology-laboratory
https://www.gov.uk/government/organisations/defence-science-and-technology-laboratory
https://www.instagram.com/dstlmod
https://www.instagram.com/dstlmod
https://www.facebook.com/dstlmod/
https://www.facebook.com/dstlmod/

