

Science & Technology Facilities Council UK Astronomy Technology Centre

# DEPLOYABLE OPTICS TECHNOLOGY AT UKATC

Noah Schwartz, Stephen Todd, Bill Brzozowski, Zeshan Ali, Maria Milanova, Jean-François Sauvage, Julie Buron







## Outline

#### **Objective**

High-angular, high-temporal nanosats Top-level requirements

#### 1.5U prototype

Initial results Issues and problems to be solved

#### **4U telescope Payload**

Improved packaging Deployable M2 Wavefront sensing

#### **Aspirations for the future**

In-orbit demonstration



## **1m ground resolution**

## Aim of project

- Provide high-resolution EO data, at lower costs, and high-revisit times
  - > 1 m Ground Sampling Distance (VHR)
  - CubeSat (standardisation)
  - Constellation

## New space but old physics

- Spatial resolution limited by aperture size ( $\theta \approx \lambda / D_{aperture}$ )
- Ground speed & revisit time limited by orbit (Kepler's law)
  > High-resolution high-SNR images require large mirrors

## **High-angular resolution**

Orbit: 500km Swath: 5km Wavelength: 450-800nm

## ►►► 30cm aperture diameter ◄◄◄

Primary mirror size largely driving by size of satellite, but...



Normal conditions Floods

Maritime security (GEO-HR)

#### 2.1 m resolution (10 cm at 350 km)

0.7 m resolution (30 cm at 350 km)





# Large aperture in space



#### Large aperture on small platforms

Typically limited to 9-10 cm apertures (e.g. 6U CubeSat)



10x10x10 cm Dimensions of a CubeSat lass of a CubeSal



How to increase optical aperture 





Monolithic



Inflatable





Docking



Free-flying



**Deployable** 

## **Deployable optics**

- Trade-off: aperture size versus the maturity of technology
- Not a new concept, but the only precedent is JWST (launch 2021)



Use of deployable optics to increase aperture diameter <

# New payload technology



#### **High-resolution at lower costs**

- Deployable segmented telescope
- Active mirror phasing
- Standalone & automated
- Cost reduction by drastic miniaturisation (deployable optics) & standardisation (CubeSats)

#### **Key Technical Challenges**

- 1. Miniaturisation & Accuracy
  - Fit into CubeSat volume during launch
  - Repeatable deployment of mirrors
- 2. Active optics control in space
  - Accurate measurement & control of mirrors position

#### > Automated process

Science and Technology Facilities Council



Main payload subsystems (Conceptual design)

# Paradigm shift



## **High-resolution – Low mass**

- 6U CubeSat (~10kg)
  - 4U payload
- Mass reduction
  - x5 Mass expected compared to current 1m GSD satellites
  - x10-15 for larger platforms

#### • Flux

- x10 Flux compared to current 6U CubeSats
- Additional design flexibility
  - Increased flux provides additional mission-level trade-offs (e.g., panchromatic vs. multi-spectral)

Science and Technology Facilities Counci



# Deployable M1- A modular design



#### **1.5U Prototype**

- 1.5U for stowing, deploying, & cophasing M1
- 4-petal M1 design
- Static M2

#### **Cassegrain telescope**

- D<sub>primary</sub> = 300 mm, Dist<sub>M1-M2</sub> = 380 mm
- Requires a fast primary mirror

#### Modular mechanical design

- One mirror can be adjusted or modified without affecting others
- Replacement of faulty hardware
- Disassembly & modifications during MAIT





## Demonstrator

#### **Commercial Newtonian telescope**

- Provides a 300 mm collimated illumination
- Light input
  - Extended objects (FLCoS micro-display)
  - Diffraction-limited source (single mode fibre)
- Vertical setup changed to horizontal to minimise vibrations







# **Deployment & Cophasing**

#### **Cophasing goal**

• Drive the 4 mirror segments in piston / tip / tilt until cophased (fraction of wavelength)





# **Deployment & Cophasing**

#### **Cophasing goal**

• Drive the 4 mirror segments in piston / tip / tilt until cophased (fraction of wavelength)





## **Telescope initial deployment**

## W

## Single-use deployment mechanism

- Use of Shape-Memory Alloy (SMA) to deploy
- Ohmic heating of SMA in close loop





- Mirrors were retracted & deployed 200 times
  - Accuracy << ±5 μm</li>
- PSFs well within detector FoV

Science and Technology Facilities Council





## **Coarse phasing: close-loop**

## **Principle**

- Control segments in close-loop: using displacement sensors + actuators
- Requires a calibration step to record optimal sensor measurement
  - Any movement of the structure will affect image quality

## **Results**

- Excellent control of position thanks to excellent sensors
  - Final error <5nm
- Poor actuator behaviour!
  - Backlash
  - Hysteresis
  - Large step size
  - Motor/flexure combination
  - •

#### New actuator required

Scienco and Technology Facilities Council





Razorbill Instrument's gold-plated ZED-CAP





# **Coarse phasing: Blob alignment**



#### 1. Each petal is 'dithered' individually and a new image is taken

- i. The difference between the new and previous image is computed.
- ii. The PSF which belongs to the petal is identified.
- iii. The move required to align the PSF with the centre of the detector is computed.

#### 2. The alignment commands are sent to the petals

lities Council





# Initial image

# **Fine phasing**



#### **Image Sharpness**

- Use N images with N different piston-tip-tilt
- Iteratively improve image quality (using a quality metric)
- Requires accurate motor movements!
- Excellent performance both on point & extended sources

#### **Phase diversity**

- Use 2 images to estimate the aberrations
- Images should differ from a known diversity (defocus)
  Algorithm estimates a phase map
  - Includes Tip-Tilt and Piston on segments
  - Includes high order aberrations

#### **Future work: Machine Learning**

- Measurement and control residual aberrations and maintain the optical quality.
- Optimally control the optics with non-invasive methods





## **Current status**



#### 1.5U prototype



Packaging 4 segments into 1.5U volume

- Laboratory demonstration of accurate and repeatable deployment
  - Shape memory Alloy (patent granted)



- **A** Excellent position control thanks to embedded displacement sensors
  - Precise optical alignment of segments demonstrated in lab.



> Adding static reference mirror

Increase in volume (4U payload)

> M2 deployment, incl. baffle

 Mirror position control  $\succ$  Find suitable actuators

number of mirrors

**Current work (CLASP)** 

Packaging

- actuator
- Improve mechanical interface
- Co-phasing
  - > High-order wavefront error
  - $\succ$  Investigate new solutions (e.g. ML, TDI...)



## **Thermal analysis**

#### **Preliminary results**



The reference case is obtained by an end-to-end modelization of the petal geometry, using aluminium and  $\Delta T=1K$ .

Considering the linear behaviour of the deformation in T<sup>o</sup>C and CTE, we were able to plot the graph.



Example of Nastran/Patran E2E modelization for 1 mirror segment deformation.



Wavefront error. Piston, Tip, & Tilt only

Wavefront error. Remaining high-orders



# **Deployable M2- Optical requirements**





## Thank you for your attention

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

Science and Technology Facilities Council