LINKING OBSERVATIONS OF CLIMATE, THE UPPER ATMOSPHERE AND SPACE WEATHER

Presented by Brian Ellison, RAL Space, on behalf of the LOCUS Team

The LOCUS Mission

IN A NUTSHELL

- Small satellite mission.
- Study composition and thermal structure of Mesosphere – Lower Thermosphere (50km to 150km).
- Least well known region of our atmosphere!
- Gather missing data to improve climate and weather models.
- Uses new THz detection technology.

LOCUS EE-10 Concept on Astrobus platform

Climate Change in the Upper Atmosphere

UNIVERSITY OF

STAR-Dundee

- There is a clear cooling trend in the MLT (-10°C).
- Much stronger than the Tropospheric warming (+2°C).
- We have no idea how much temperature change is from an increase in greenhouse gases.

INIVERSITY OF LEEDS

University of

[[]Solomon et al. 2018]

Why we Need LOCUS

- Measure and monitor a complex system to improve climate change knowledge.
- Current instruments (i.e. SABRE) estimate cooling rates by measuring the heat flux at infrared wavelengths.
- Above insufficient to understand Upper Atmosphere climate change. Need the abundance of O and should measure temperature directly.
- Also want to measure the chemical proxies of Space Weather forcing.

LOCUS Technical Concept

- 4 independent THz heterodyne radiometer channels (0.8THz, 1.15THz, 3.5THz and 4.7THz).
- Each channel targets key species O2, NO, OH and O with ~3MHz spectral resolution.
- Ability to self calibrate via on-board hot and deep space cold targets.
- 4 independent IR channels provide temperature measurement.
- Single highly integrated small satellite platform in sun-synchronous orbit at 800km altitude.

LOCUS THz Receiver Technologies

• LOCUS (Supra-) THz heterodyne instrument only becoming viable now through innovative (critical) UK technologies:

Quantum Cascade Laser (QCL) devices as a high-power source to pump heterodyne Schottky mixers Miniature space coolers to provide QCL cooling (~70K) Improved Schottky diode & mixer manufacturing for THz frequencies Compact, high-speed, power efficient digital spectrometers

LOCUS Satellite Concepts

SSTL 150 Platform

Airbus Astrobus Platform

[SSTL 2014, ESA IOD Study]

[Airbus 2018, CEOI EE-10 Preparatory Activities]

Critical Technology Breadboarding

- LOCUS Heterodyne process translates THz input signal to lower frequency.
- Objective: Raise Technology Readiness Level (TRL) of associated key components.

Critical Technology Breadboard (1.15THz)

1.15THz Mixer Development

Optical image of mixer circuit with integrated Schottky diodes. Anode dia. ~ 0.8μm.

Internal view of lower block with mixer circuit

1.15THz mixer block

1.15THz Receiver

E-beam fabricated diode

STAR-Dundee

- Receiver integrated into space cooler. Performance enhancement required.
- Needs smaller diode anodes difficult fabrication task.
- Move to E-beam diode lithography demonstrated.
- Anodes <0.5µm dia. being developed.

QCL Integration and Beam Measurement

- Leeds developed 3.5THz and 4.7THz QCL devices.
- Waveguide blocks with integrated feedhorns fabricated by RAL.
- Waveguide integrated QCL tested in a space cooler system.
- Output power measured and 2D antenna measurements made.
- Operational temperature and polarisation effects also studied at 3.5THz.

QCL Mounted into Waveguide Block

QCL Block With Diagonal feedhorns at each end

Integrated QCL Beam Measurement

IVERSITY OF LEEDS

RAL Spa

- Dual feedhorn block + QCL cooled to ~65K.
- Scanning Golay cell used to measure dual output beams.
- QCL bias modulated to reduce background effects.
- Images: a) simulation, b) dual feedhorn measurement.
- Suggests single waveguide (TE₁₀) mode of propagation.

Integrated QCL Measurements at 3.5THz

- Beam profiles measured with reduced aperture Golay detector (2mm dia.).
- Good agreement obtained with theoretical plot re. FWHM.
- Good Gaussian distribution.

Integrated Optical System Measurement

LOCUS Breadboard Development

- Design and manufacture of an elegant breadboard to test:
 - Optical bench.
 - Mirrors + alignment.
 - Radiators.
 - Mini space cooler.
- Performed Thermal Vac. Test
 - Demonstrated cooler operation and stability.

RAL Spac

UNIVERSITY OF

OXFORD

LOCUS TRL Roadmap

[Airbus 2018, CEOI EE-10 Preparatory Activities]

Summary

- LOCUS, e.g. EE10, science justification established and community engagement achieved.
- Mission concept defined with major payload and small sat. platform attributes assessed (support from CEOI and ESA).
- Critical component technology TRL advanced.
- Optical breadboard system developed and small cooler technology evaluated.
- More work to do, e.g. full supra-THz receiver needs to be demonstrated, inc. freq. stabilization, and integrated payload performance tested in TV.
- Flight opportunity (EE11?) needs to be acquired along with full additional, e.g. Phase A/B1, funding.

Thanks for Listening

