

Demonstrating Multi-View Spectroscopy for Greenhouse Gas Remote Sensing

Hartmut Boesch, Neil Humpage, Piyal Samara-Ratna, Paul Palmer, Andy Vick, Phil Parr-Burman, Georgina Miles, William Grainger

Space-Based Greenhouse Gases Measurements

- Shortwave-infrared spectroscopy is key technology for space-based CO₂ and CH₄ measurements
- Series of pioneering LEO missions (GOSAT, OCO-2, TanSat)
- But, poor coverage and potential biases in Tropics due to clouds & aerosols leaves critical knowledge gaps

GHOST – GreenHouse gas Observations of the Stratosphere and Troposphere

- GHOST is joint development by U. Leicester and Edinburgh and UK ATC (funded by NERC and STFC)
- GHOST is a unique shortwave infrared spectrometer for airborne platforms with 4 (5) spectral bands with CO_2 , CH_4 and CO absorption
 - <u>Reductions in size and weight</u> by using technology originally developed for astronomy instruments
 - <u>Main innovation</u>: use of optical fibre feed system in combination with blocking filters and multiple grating orders to provide several bands with different wavelengths onto single detector (Virgo 2K MCT)

GHOST Concept

- Designed to meet engineering requirements for installation on NASA Global Hawk
 - Challenge: stable operation for ~20h flight for pressures and temperatures @20km

GHOST components:

- Target Acquisition Module (TAM): active mirror-based pointing system to feed light into optical fibre bundle
- Spectrometer Module housed in LN2 cryostat to maintain detector temperature (98K) and reduce thermal background
- Air Transport Rack (ATR): pressurised enclosure that houses the electronics

EICESTER

Calibration & Performance

NERC FSF Integrating Sphere

Band	Gases	Range (µm)	Resolution (nm)	Sampling	SNR (@Lref)
1	O ₂	1.24 – 1.30	0.10 - 0.11	3.3 – 3.8	187
		1.25 - 1.29	0.1	3	150
2A	CO ₂ , CH ₄ , H ₂ O	1.59 – 1.67	0.23 – 0.24	6.0 - 6.5	428
		1.59 - 1.68	0.3	3	80
2B	CO ₂ , CH ₄ , H ₂ O	1.59 – 1.67	0.17 – 0.20	4.4 – 5.1	303
		1.59 - 1.68	0.3	3	80
3	CO ₂ , H ₂ O	1.99 - 2.09	0.25 – 0.26	5.2 – 5.4	286
		2.04 - 2.09	0.3	3	100
4	CH ₄ , CO, H ₂ O	2.27 - 2.38	0.26 - 0.28	4.8 – 5.1	203
		2.31 - 2.39	0.3	3	80
					A A TT

Performance Requirements

Soaring High with the Global Hawk: Flying New GHG Technology

Harris et al., BAMS, 2017; Humpage et al., AMT, 2017

Deployment over Pacific

Motivation for Multi-view Spectroscopy

- Multi-view spectroscopy brings together approaches used for trace gas and aerosol retrievals
- Viewing same target from multiple angles allows for better characterisation of scattering effects e.g. from aerosols and cirrus
 - Improved CO₂ retrievals in presence of aerosols/clouds

Demonstrate Multi-view Observations from an Aircraft

- When target co-ordinates are within the gimbal viewing geometry, gimbal continuously tracks the target
- Otherwise, gimbal reverts to nadir pointing

8

Instrument Installation

GHOST Installation on the BAS Twin Otter Aircraft in 17 May 2018

Test flight on 31 May: Functional test of target tracking

Cardington Hangars

Flight Campaigns

21st June 2018: Chilbolton, Harwell, Ratcliffe-on-Soar

- Chilbolton
 - o Ceilometer, lidars for aerosol
 - o Cimel sunphotometer for AOD
- Harwell/RAL
 - o Bruker 125 FTS
- Ratcliffe-on-Soar
 - Power station
 - o GPS failure

22nd June 2018: Edinburgh, Drax, Leicester

- Royal Observatory, Edinburgh
 - o Laser heterodyne radiometers
- Grangemouth
 - o Crude oil refinery
- Drax
 - Power station
- Leicester:
 - o Portable FTS

Flight Data Analysis

• Flight1:

- o 6,500 spectra during 4.5 h flight
- Target tracking over Harwell and Chilbolton covering +/- 45 degrees
- Flight 2:
 - o 15,000 spectra during 7h flight
 - Target tracking over Royal Observatory, Grangemouth Refinery, Leicester covering +/- 45 degrees
- Spectral Analysis looks good but is still ongoing

Tropical Carbon Mission (TCM)

Quantifying tropical carbon fluxes from space using high-resolution, multi-view SWIR spectroscopy and aerosol retrievals

Primary mission objective: reduce uncertainties in the magnitude and distribution of tropical CO_2 fluxes to determine the sign and magnitude of the net carbon balance of the tropics every four weeks.

Secondary science objectives: a) reduce the uncertainties CO and CH_4 fluxes, and b) improve source attribution of observed variations in atmospheric CO_2 .

Complements CO₂ measurements from LEO instruments by improving their ability to infer extra-tropical fluxes.

A 35° inclination orbit achieves necessary sampling

Using unique NASA global 7km CO₂ simulation (selfconsistent analysis of cloud, aerosol, CO₂):

TCM: more clear-sky data with less gaps than OCO-2 and no temporal bias: more robust CO₂ fluxes

5-angle multiview improve XCO2 retrieval

Increases # clear-sky observations (super-obs) and reduces measurement gaps. Optimize XCO2 information content.

Innovative instrument design

Merging astronomy and EO designs.

High TRL through heritage

SWIR spectrometer (GHOST), aerosol imager (MISR, POLDER, (A)ATSR), cloud imager.

fits

bus

Design available platforms

Power, size, mass fit within available launch vehicles.

Summary

- GHOST is a novel GHG spectrometer developed in the UK using innovative shortwave-infrared technology
- GHOST has been designed and deployed on NASA Global Hawk
- Successful conducted two aircraft deployments of GHOST in the UK to with target tracking to demonstrate multi-view spectroscopy
- GHOST serves as airborne technology demonstrator for the Tropical Carbon Mission TCM concept

