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g Opportunity

Growth in demand for real-time actionable data from space
Resource-constrained small satellites dominating manifests
Intensive applications like space video and IoT communications
Need to manage complex networked concept of operations
Existing operational paradigms outdated

Rapidly evolving consumer-driven autonomy market

=> Develop common product components to enable more responsive
operations
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Reference Onboard Architectures
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DETECT: Forwards Looking Imager
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< FLI Algorithm Downselect
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ncreasing applicability across domains




g Deep learning
* Applied transfer learning to W %%\\\
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Simonyam K & Zisserman A, “Very deep convolutional networks for large scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
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Implementation challenges

* Power and processing constraints . &

Gain Correction %
* Access to applicable Level O training data ’
* Ground reference points
* Incorporating anomalies

* Onboard systems interfacing

* Meeting operational regulations

* Demonstrating mission assurance | —
_ Pixel Alignment & pag G
* Parallax error due to forwards looking
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g Enabling strategies

FPGA Acceleration of CNNs

* Target FPGA with known flight heritage

* Tools to enable rapid synthesis from high
level languages to embedded

* Evaluation of a number of optimization .
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< Test case

* Image is split into tiles

* Cloud detection payload
classifies each segment with a
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g Results

Model Initialisation! Inference?
Pre-optimal 7.06 s 3.63s
Pre-acceleration (PS) | 0.36s 52.9s
Accelerated (PS+PL) 0.36s 0.19s

(1) Initialisationis alwaysin PS. Involves loading neural
network libraries and creating NN object.

(2) Inference performed on single image split into tile
segments and batch classified

Accuracy of 97% achieved against human evaluatedtiles,
now being formally benchmarked
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g Payload cloud avoidance

* Inference model is deployed on FPGA, allowing real-time cloud detection
e Atthe area accessrate in LEO we can extract features at 60% max loading
e <2 W, <5 sfrom capture through to planning output



< Initial benefits

Technical Non-technical

* Component based standards for * |Interfacing with various university
autonomous flight software departments

* |dentification of autonomy * Running successful R&D projects
enabling algorithms and within a small business and team
applications « Managing work across university

* Application of deep learning neural and industry project partners
network.s for target classification - Possibility of and demand for

* Toolchain from high level language mission in UK across
through to accelerated firmware SME/academia

* Techniques to allow low power * Application of more formal
real-time data processing onboard gateway design review (RID)

process



%{ Ongoing since April



* Craft Prospect has created a MVP EM
product for CubeSats and small
systems

* Delivered to first customers for third
party performance benchmarking and
interface testing

* FPGA-based (2W), but extendable with
Myriad units for additional low power
neural networks

* Reconfigurable for real-time ops
* Tile-size, sensor input, resamples,
field of view, responsive time

5 & Higgs Centre for Innovation

* Internal or external camera sources i O . 7 science & Technology Faciltes Council




< Current developments

* Extended NN to include any bands and | My Ny N
any combinations/number R G, B M S,

* Trained with own data and existing: &'
Planet, Sentinel, LandSat, drone

* Tools to rapidly classify new data sets o S e k]

using transfer learning

* Tools to create and extend sparse data
sets for training

 Utilised and benchmarked performance
between FPGAs and VPUs

* Integration with existing third party _. S
camera systems G BRI \ovidius




g Drone testing

MANCHESTER

=324

The University of Manchester



%g Seed contracts delivered
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AI4EQ Asset Maintenance Attitude Control Testbed

* Looking to partner with others interested in onboard data processing
with Al or autonomy for different data sets / use cases



Responsive Operations for Key Services

Low Earth Orbit (400km)

e Onboard ML to support real-time planning G S

and signal identification EO + Telecom “ Fine pointing ~3 microrad ‘<9
Active beam steering ¥ .” 10 kg 6U CubeSat
: ADCS pointing 0.1-1deg
532nm Beacon e ',,’ *"90mm Aperture
Artificial Guide Star - -° 7.8 microrad divergence HA

* Maximise utility of high power and bandwidth
Quantum Key Distribution (QKD) payload

,+*,+” 800nm Single Photon

* In-Orbit Demonstration opportunity for FLI A" WCPorEntangled Source

£
/
and autonomy framework ‘ W

* Towards delivery of secret keys for securing
BT telecoms infrastructure

T

BT

Innovate UK



< Summary

Overall framework for autonomy and enabling algorithms presented for small/nanosatellites
Forwards looking imager EM on flight representative hardware, with 1-2 min look-ahead
Engaged with 14 potential customers for the technology to understand requirements
Acceleration of enabling algorithms embedded into FPGA 300x faster (PS vs PS+PL) [and VPUs]
Toolchain to rapidly develop and test from high level languages to embedded prototyped
Real time feature detection for the area access rates in LEO demonstratedat<2 W
Application and training optimisation of deep learning for cloud detection case
System-in-the-loop simulation developed to allow end to end testing of the imaging system
Plans/opportunity to progress key technology elements in flight demonstration 2019

Towards full flight opportunity in the Responsive Operations for Key Services 10D
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