

Compact Multi-Spectral Imager for Nanosatellites II

CEOI 11th Call

http://cmsin.phys.strath.ac.uk/

Project Lead: Dr Daniel Oi Computational Nonlinear & Quantum Optics SUPA Department of Physics

NCEO/CEOI Conference 24th June 2020

Talk Outline

Compact Multi-Spectral Pushframe Camera for Nano-Satellites Y Noblet, S Bennett, P F Griffin, P Murray, S Marshall, W Roga, J Jeffers, D Oi https://arxiv.org/abs/2006.01653

- Single Pixel Imaging
- Pushframe Imaging
- Experimental Demonstration
- Prototype
- Future Work

Scottish Centre of Excellence in Satellite Applications

- Physics
 - Daniel Oi: Project Manager
 - John Jeffers: Lead Manager on Design & Simulation
 - Paul Griffin: Lead Manager on Experiment
 - Yoann Noblet: Experimental Optics
 - Wojciech Roga: Former member, theory
- SoXSA
 - Malcolm Macdonald: Lead Manager Roadmapping
 - Steve Owens: User Engagement, Mission Analysis

CeSIP

- Steve Marshall: Lead Manager Signal Processing
- Paul Murray: Co-Manager Signal Processing
- Stuart Bennett: Signal and Image Processing
- WideBlue
 - Barry Warden: Project Manager
 - Craig Whitehill: Optical Physicist
 - Callum Stewart: Mechanical Engineer
 - Graeme Millar: Electronics design engineer
 - Ken Devlin: Software / Firmware design
 - Niall Slater: Mechanical Engineer

Objective

- Target detection, characterisation
 - Complement traditional imaging
 - *Reduced* data acquisition
 - "Intelligent Sensing"
- Optimised for smallsat constellations
 - Low power requirements
 - Persistent operation
 - Cueing of other orbital assets
- Flexible operational modes
 - Adaptive/event driven
 - Multispectral operation

Single-Pixel Imaging (SPI)

- Multiplexed/modulated spatial information captured by single pixel, multiple patterns
- Hadamard Patterns or Compressive Sensing (CS)/Sparse Reconstruction
- Imaging at λ where 2D arrays unavailable or expensive
- Foveated or adaptive sampling

Digital Micromirror Device Optical processor

Reflective – Inherently broadband

All bands automatically co-registered

Pushframe Imaging

- Overcomes sampling time limitation of conventional SPI
- Similar to Pushbroom operation
- Parallelised 1D Single Pixel Imagers
- Can use a fixed pattern, *motion across scene* applies different patterns to each strip automatically
- Advantages
 - Enables Compressive Sensing
 - Adaptive Operation
 - SNR Improvement for certain noise (c.f. Hadamard Transform Spectrometry), particularly when read-noise limited

a) pushframe

b) pushbroom

Adaptive Sampling

Reduced data acquisition, low power monitoring

Simulated pushframe imaging with adaptive sense patterns

(a) Monochrome source image

(b) Acquired image, 2.3% of source

(c) Multi-spectral source image

Sense patterns adaptively chosen based on preceding "signatures"

Patterns can also mask out land/sea, reduce background light

(d) Acquired image, 1.5% of source

Imaging Concept

University of Strathclyde Science

Experiment

Testbed 1

Testbed 1 Early Results

Note: 1D Light Integration Optics

- Difficult to design and construct
- Simulated by post-processing 2D array, allows analysis and diagnostics
- Novel optical configuration required for practicality

Testbed 3 Results

Prototype

- Engineering Model, first pass at packaging of optics and electronics
- COTS components mostly
- Vis (RGB) and SWIR, simulated 1D optical integration
- "Field deployable", in situ testing

wideblue

making technology happen

Early optical layout design. Repackaged for ease of manufacture

CS Pushframe

Compressive Sensing to reduce acquisition time, onboard data handling, and transmission requirements.

- CS requires data to be sparse in some basis.
- Natural images appear sparse using Haar wavelet basis.
- CS relies on sensing bases being incoherent with sparse bases.
- `Noiselets' are maximally incoherent with Haar.
- Noiselets are complex valued, with the components taking +1, 0, or -1 values, but can be transformed to real binary patterns for DMD use.

Block Compressive Sensing (BCS) and Total Variation (TV) reconstruction Simulation Results with 40% Sampling

Method	SSIM (1 is lossless)
OMP	0.544
NESTA (uses TV)	0.886

CS Experimental

Preliminary results using modified spatial modulator and mask geometry

256x256

100%

50%

Future Work

- Solve 1D light integrator, reach etendue limits, optimised integrated optical design
- Theory
 - Improve CS patterns and reconstruction
 - Continue analysis of optics non-idealities and reconstruction
 - Multispectral CS
- Design adaptive pattern, algorithms
 - Scanning, detection, identification
 - Trade-off between compression, data quality
- Characterise multispectral performance of Prototype
- Novel optical architectures for CS MSI

Exploit spectral correlation in CS sampling and reconstruction

Extra Slides

New experimental setup

- Better geometry
- Greater light loss
- Non-optimal SWIR performance

