

On-board VidEo Rapid ProceSSing (OVERPASS)

CEOI Flagship Project

Earth-i, UCL-MSSL, Cortexica, SSTL

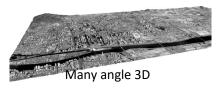
Owen Hawkins Product Development Director, Earth-i

Project Objectives

- To develop, test and demonstrate EO data processing algorithms and techniques, involving both software and dedicated hardware
 - Target hardware: NVIDIA Jetson TX2; others also investigated including Movidius
 - Algorithms implemented and tested include:
 - Cloud Detection
 - Data Compression
 - Object Motion Detection & Tracking
 - Super Resolution Reconstruction
 - 3D Modelling
- Investigate how these capabilities could be deployed on-board future optical imaging EO satellites

Target Missions and Main Benefits

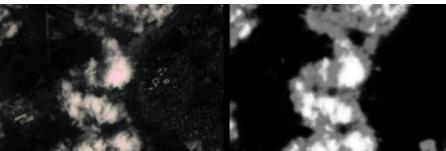
- Focus mission is the Vivid-i constellation
 - Based on Earth-i's Vivid-X2 prototype mission
 - Launched January 2018

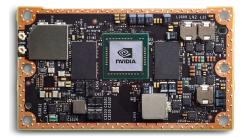

earth

- 1m RGB point-and-stare video
- Constellation to consist of 15 satellites
 - 3 launches of 5 satellites
 - 3 LTAN/LDTN times targeting mid-morning, mid-day, and mid-afternoon
- The benefits of on-board processing include:
 - Reduction in the amount of data stored and downlinked
 - Faster delivery of AR products direct to user from sensing to reception
 - More cost effective mission
 - Optimise satellite utility during periods without imaging or GSN access
 - Using low cost COTS products for on-board processing, e.g. NVIDIA Jetson, NVIDIA Orin, AMD Ryzen, Intel Myriad VPU, Google Edge TPU

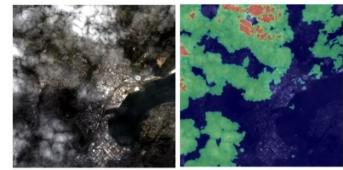
OVERPASS

Developing, primarily for processing on-board the satellite:


- 3D Surface reconstruction
- GAN based superresolution
- Cloud detection
- Moving feature extraction
- Compression

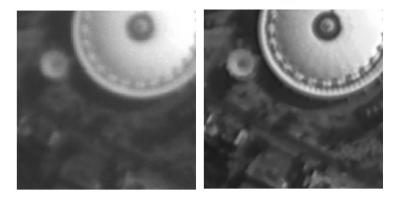

Cloud Detection in RGB

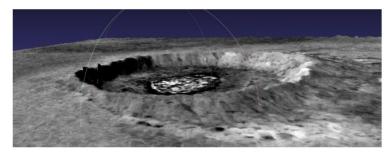
JETSON TX-2



Technology – 1

- Cloud Detection
 - ML algorithm inspired by U-Net
 - GPU implementation
- Data Compression
 - ML algorithm using R-GRU (Residual Gated Recurrent Unit) networks
 - GPU implementation
- Object Motion Detection & Tracking
 - CV algorithm based on a background subtraction technique
 - Tracking algorithm based on SORT (Simple Online and Realtime Tracking)
 - Multi-threaded CPU implementation




Technology – 2

- Super Resolution Reconstruction
 - ML algorithm using CNN (Convolutional Neural Network) and GAN (Generative Adversarial Network)
 - Multi-threaded CPU implementation

- 3D Modelling
 - NASA ASP modified with custom algorithms
 - Multi-threaded CPU implementation

Achievements and Current Status

- Project has been successfully completed. Efforts now underway to develop further and exploit commercially.
- Not all developed algorithms are suitable for on-board processing
 - Demands of the algorithms vs. on-board resources

earth

- All algorithms developed have their uses for on-ground processing
 - Some are now being used on other ESA projects (e.g. the EO Video Exploitation and Analytics Platform, EOVEP)
- On-board processing beneficial for other tasks leading towards spacecraft autonomy, e.g. AOCS monitoring & correction, prioritisation of data capture & downlink, power and thermal regulation