

Autonomy Assurance for Small Satellite EO Missions

MANCHESTER 1824 24th June 2020 Steve Greenland Commercial-in-Confidence

Centre for EO Instrumentation

Smart Secure Space

• Aim:

• Deliver prototype solutions, from TRL 2 to TRL 4, which satisfy end user requirements for assuring onboard autonomy in small and nanosatellite EO missions

• Outputs:

- Autonomy components implemented and tested in flight heritage spacecraft software
- System-in-loop prototypes for use cases
- Components flight-tested on drones
- End user data packs, providing assured autonomy for an application

Monitoring & Control *		Planning & Scheduling *		Autonomy Manager	
Event Log	(Critical) Monitor	Resource Forecasting	Goal Planning	Autonom	
	Event- Action		Scheduling	Supervisor	
Flight Dynamics *	'	Onboard Control	Procedures *	Data Source	
Orbit Mode	4	Scrip	ting	Instrumer	
Networking		Data Processing		Instrumer	
Comms Stack	Comms Manager	Realtime Process	Offline Process	Manager	
	'	Archiving *		Deployment	
		Product Summary	Data Manager	Compone	
Defined in th	is work			Explorer	
Gen1 current or planned		1	Data	11	

Flight testing

- Real-time autonomy
- Closed-loop control

SIL simulation

- Bright Ascension SW
- Space-ready components
- Simulated environment

In-orbit demonstration

- Flight/sim-tested components
- BAL SW
- Continuous testing + quality assessment
- In-orbit updates
- ROKS, Φ-Sat 1

Real-time Night-time Cloud Detection

• Aim:

• Develop prototype of algorithm ready for onboarding on demonstrator mission

Challenges

- Synthese a representative dataset based on alternate image sources for the sensor flown
- Transfer learning from existing algorithms and optimisation with the onboard processing capability

• Outputs:

- Feasibility of in-orbit night-time cloud detection demonstrated
- Demonstrated accuracy > 97% with Myriad-2 chip in the loop
- Engagements with Cosine and ESA for in-orbit demonstrations

Centre for EO Instrumentation

- 150,000 unique training images
- 15,000 unique testing images
- Accuracy >97%

Predicted Confident clear9.6%1.2%Predicted Cloudy1.6%87.6%97.2% accuracy 9MB network 68 imgs/s	Network 3	Actual Confident clear	Actual Cloudy
Predicted Cloudy1.6%87.6%97.2% accuracy 9MB network 68 imgs/s	Predicted Confident clear	9.6%	1.2%
97.2% accuracy 9MB network 68 imgs/s	Predicted Cloudy	1.6%	87.6%
	97.2% accuracy 9MB network 68 imgs/s		

Next stop: Deployment in Space!

- Completing assurance project in Q3 2020
- In-orbit demonstrations of our work
- Flying our own in-orbit demonstrator ROKS combining quantum and AI/ML technology
- Bidding with consortium on major commercial contracts using onboard AI/ML
- Engaged with small satellite primes on integration with existing image, video and RF sensors
- ESA future looking contract: Future Onboard Processing and Information Extraction Architectures
 - Stakeholder Survey and Workshops Planned
 - If you want to participate and be included on the list of companies in this area, get in touch
 - <u>murray@craftprospect.com</u>

Smart Secure Space

With thanks to ceol

www.craftprospect.com

©craftprospect

