

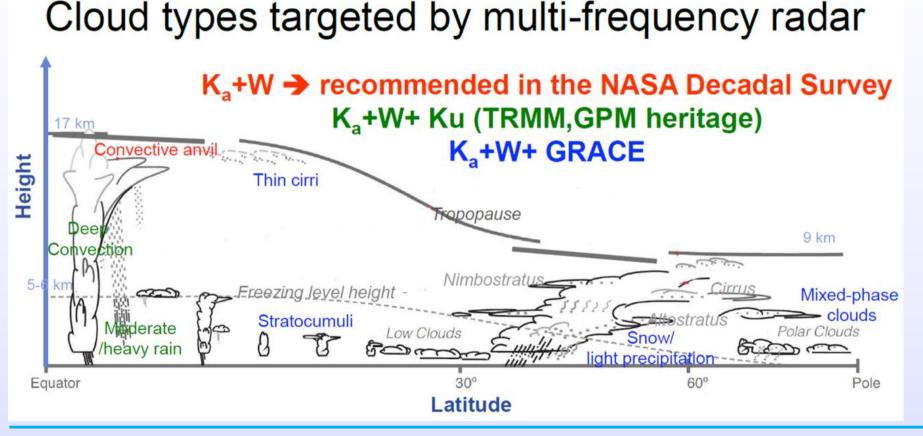
GRaCE: G-band Radar for Cloud Evaluation

H. Wang, E. Rumi, R. Reeves, M. Oldfield, G. Howells & P. G. Huggard : STFC Rutherford Appleton Laboratory

S. Froud, R. Albers, T. Walker & R. Wylde: Thomas Keating Ltd.

A. Battaglia: University of Leicester

D. A. Robertson: University of St Andrews

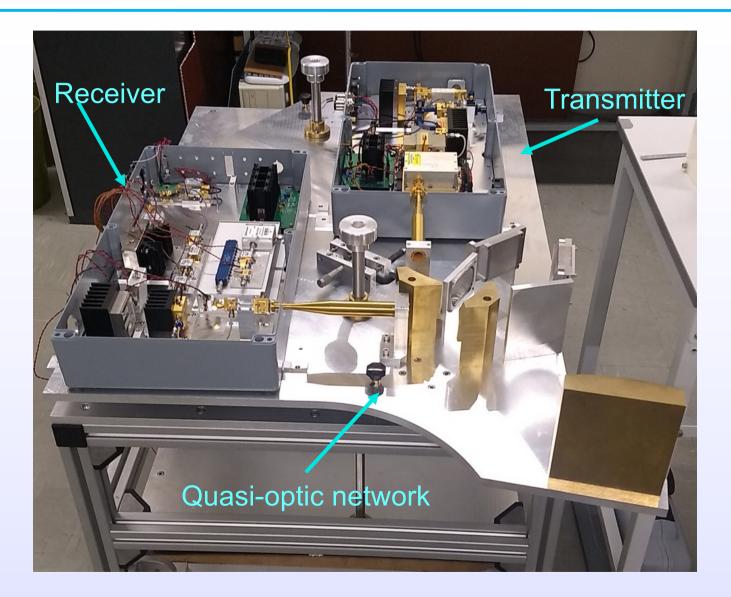


NCEO-CEOI Virtual Conference, June 24th 2020

Benefits of Space Cloud Radar

- G-Band, circa 200 GHz, radar delivers enhanced information on small water droplets and ice in the atmosphere: better scientific understanding
- Combine with lower frequency radar observations: better numerical weather prediction

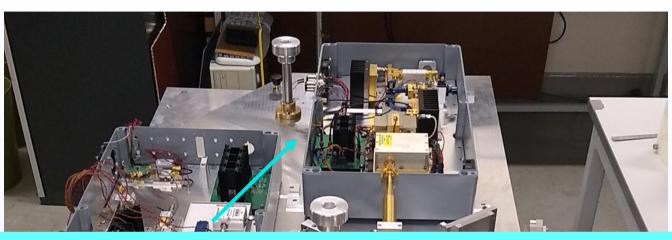
The GRaCE project



- Ground based science and technology demonstrator for a future space radar (export opportunity)
- Monostatic, pulsed, Doppler, zenith looking, radar
- Exclusively solid state technology
- Deployment & comparison with other cloud radars at Chilbolton Observatory, Hampshire
- Frequency, 199.5 GHz, set by OFCOM and atmospheric transmission

Completed Hardware

QON


Quasi-optic network allows transmitter and receiver to share common antenna

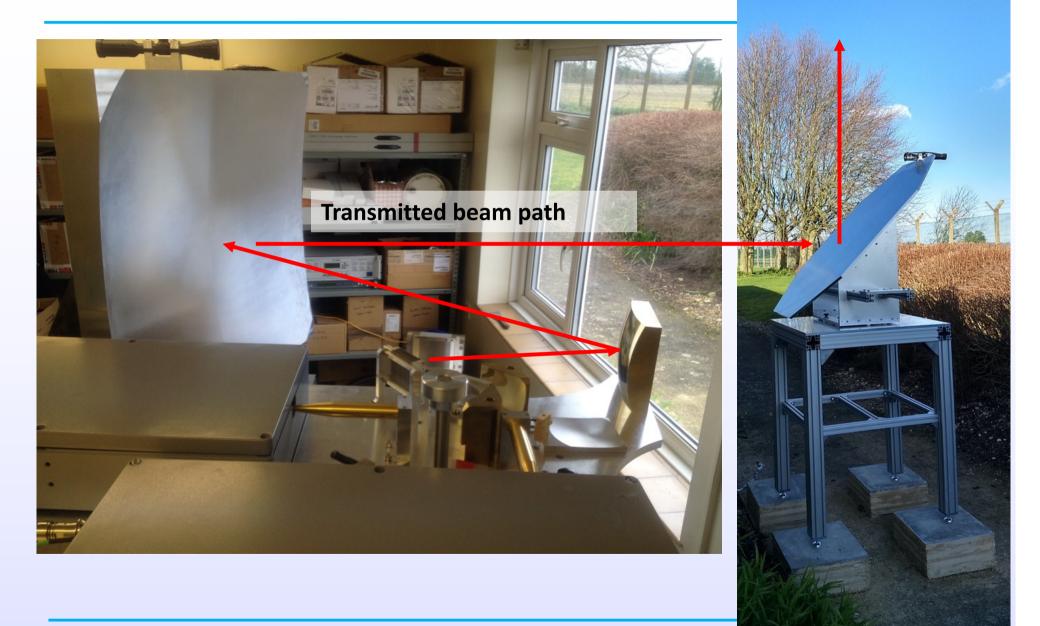
- Corrugated feedhorns: measured single pass insertion loss at 200 GHz is \approx 0.35 dB
- Network insertion loss at 200 GHz is \approx 1.2 dB
- Polarisation rotation gives Tx to Rx Isolation > 60 dB
 - Prevents a high power transmitter destroying the receiver

Тx

High power solid state transmitter

- 100 GHz QuinStar power amplifier
- Teratech frequency doubler
- Pulse lengths 10 ns to 300 ns via fast pin switch at 33 GHz
- Range resolution 3 m to 100 m
- Peak transmitted power 80 mW

Rx



Sensitive super-heterodyne I & Q receiver

- 200 GHz subharmonic mixer from MetOp-SG
- Conversion loss ≈ 6 dB
- Noise temperature ≤ 600 K

Installation

First atmospheric results

10

- Returns from a passing shower on June 18th
- Sensitivity not yet at design value

. 🗩		Intensity Limits	Last Measureme
000-1		100.12E-3	4.800E-3-
900-		4.745E-3	4.780E-3-
800-		4.740E-3	4.760E-3+
700-		4.735E-3	
500 -		4.730E-3	4.740E-3 -
500-	2 2 3 A A A	4.725E-3	4.720E-3-
400-		4.720E-3	4.700E-3-
00-		4.715E-3	4.680E-3-
-00	14.2 State	4.710E-3	4.080E-3-
100- 100-		4.705E-3 ar	코 4.660E-3-
- 000		4.705E-3 Int 4.700E-3 vj [dB2] 4.695E-3 2	[7] [7] [7] [7] [7] [7] [7] [7] [7] [7]
900-		4.695E-3 🗒	_⊑ 4.620E-3-
300 -		4.690E-3	4.600E-3-
700 -	- 1972 - Valda	4.685E-3	4.000E-3-
500 -		4.680E-3	4.580E-3- Hapt from and the reading of the first of the shall be when the
600-	and the second second	4.675E-3	4.560E-3-
400 - 300 -		4.670E-3	4.540E-3 -
200-	and an and an a	4.665E-3	4.520E-3-
		4.660E-3	4.320E-3-
0	20 40 60 80 100 120 140 160 180 200 2	240 260 280289 100.11E-3-	4.500E-3-1 1 50 100 150 200 250 300 33
m <mark>e [hh:m</mark> m		4.650E-3	Range (m)
nge [m]	B TA wat		Range (m) 🗴 🕮 👫 😰 🖑
tensity [dBZ	<u>ت</u> 2. 2 <u>3</u> ه		Intensity [dBZ] b JY V.VU

Conclusion

- GRaCE hardware completed and software at advanced stage
- Instrument installed in Chilbolton prior to March shutdown
- First atmospheric returns have been obtained.
- Hardware improvements and completion of dielectric window are outstanding

Acknowledgement

GRaCE is grant funded by the UK Space Agency through the UK Centre for Earth Observation Instrumentation