'Principal Investigator':

Professor Nigel Fox National Physical Laboratory, UK Vis Prof Univ of Reading Chair: CEOS WGCV IVOS

Traceable rosa Radiometry Underpinning **Terrestrial-** & Helio-Enabling a space-based Studies Climate & calibration observatory

UK SPACE NPL DE pmod

Centre for **EO** Instrumentation

Cesa

WIC

Approved as an ESA Earth WATCH mission (28 Nov 19)

Mission Objectives

TRUTHS is an **operational climate-focused mission**, aiming to:

- Climate benchmarking: enhance by an order-of-magnitude our ability to estimate the <u>Earth radiation budget</u> (and attributions) through direct measurements of incoming & outgoing energy,
- 2. Satellites cross-calibration: establish a 'metrology laboratory in space' to create a fiducial reference data set to <u>cross-calibrate</u> <u>other sensors</u> and improve the quality of their data, robustly anchored to a primary SI reference in space.

and

3. provide SI-traceable measurements of the **solar spectrum** to address direct <u>science questions</u> and climate.

Mission Products

Radiation balance

Solar spectral irradiance

Surface reflectance

Key performance requirements

Level 1 products	Mission Requirement				
	Spectral range (nm)	Bandwidth (nm) Spec Samp Int ~0.5 FWHM	Uncertainty (%) (k=2)	SNR	GIFOV (m) @100 km Swath
Earth spectral radiance (Climate Benchmark)	320 - 2400	<8 for < 1000 nm <16 for >1000 nm	0.3 (goal) <1.0 (Threshold)	>~50	250
Solar/Iunar Spectral Irradiance	<320 – 2400	1 (<400), <5 (<1000), <10 (<2400)	0.3 (goal) <1.0 (Threshold)	300	NA
Total Solar Irradiance	Total	200-30000	<0.02 (goal) 0.05 (Threshold)	<500	NA
Earth radiance (Calibration / secondary applications)	<400 - 2400	<8 for < 1000 nm <16 for >1000 nm	<1.0	To not limit uncertainty of application >~150 @ 50 m for 500-950nm	50 – 100 m Integrated up for GHG/Ocean Col/Climate Multi-angle sampling

The TRUTHS design is driven by:

- □ Radiometric demands of the climate application → Payload and calibration
- □ Geometric to optimally match other sensors (calibration) and secondary applications → FoV, Swath & SNP
- □ Orbit: optimal sampling to quantify the climate and facilitate cross-calibration → Satellite and launch

Climate: Examples

- Robust anchor for long-time-base FCDRs
 - Can provide a bridge between data gaps
 - Remove any ambiguity in data quality
- Enables trends in Key feedbacks like cloud to be detected significantly earlier limited by natural variability
- Most accurate measure of Short-wave 'radiation balance' (in and out)

Time to detect trend (e.g. cloud rad forcing) based on Uncertainty of sensor

Need to test & constrain Variance in climate model forecasts (IPCC)

TRUTHS: Underpinning operational ECV retrievals for climate monitoring and model improvement

Carbon-sink- Ocean

COLOUT: direct TOA crosscalibration of sensors to absolute radiometric accuracy of ~0.5%, meeting GCOS requirements

• Aerosols: "Climate closure points" unifying ground networks and multiple optical sensors through the TRUTHS FCDR.

• **Emissions- CO₂**: Referencing Copernicus and multi-agency CO₂ constellations at 0.5-1.0% radiometry through cross-calibration.

• Land use change

Many & varied users

National Met Services, Copernicus C3S, ESA CCI, Eumetsat CMSAF, NCEO

"New space" constellation providers - every constellation climate quality

ESA, Copernicus, EUMETSAT, LANDSAT inc. commercial companies/contractors

End users: e.g. agriculture, insurance,

Imperial College London

rauference pmod Wrc MASSIMILA

The Satellite

Single satellite:

- placed on a LEO (~600km) polar (90°, non-SSO, precessing) orbit;
- Small/medium class" (<1 ton, <1kW);</p>
- "agile" (repointing at each orbit to Earth / Sun);
- able to support high payload data volume (~4500 Gbits daily) & rate (X-band, ~600 Mbps), some onboard processing needed.

Satellite elements:

- Platform (reference Astrobus-S/M, TBC);
- Hyperspectral Imaging Spectrometer (HIS);
- Cryogenic Solar Absolute Radiometer (CSAR);
- On-Board Calibration System (OBCS).

TRUTHS Innovations

Optimised Platform/Instrument Interface Separated Instrument and platform mechanical interface to optimise industrial activities, whilst benefiting from a single Airbus design.

Z - Nadir

Instrument Hosted Platform Equipment

Mission design - Phase A/B1 to start soon

Innovations:

- **Polar orbit**
- Hyper-spectral imager
- **SI-** Traceability on-board
- Calibration system -
 - **Primary standard**
- Establishing 'NPL in space'

What makes TRUTHS different to other optical satellite missions? Hyperspectral

TRUTHS includes an on-board calibration system, that replicates the SI-traceable calibration chain employed in National Metrology Institutes (NMIs) globally, including flight of a primary standard - a Cryogenic Solar Absolute Radiometer (CSAR) (see calibration video).

The hyperspectral imager on-board TRUTHS is routinely re-calibrated, with SI-traceability.

Maintaining it's SI-traceable high radiometric performance throughout the mission lifetime.

Representation of the TRUTHS calibration system

How the TRUTHS on-board calibration system works?

Describes the sub-systems

CSAR – Primary standard

Transfer radiometer

Hyperspectral Imager

Broadband interpolation

Laser diode & delivery system

Describes the linkages from laser power to spectral radiance calibration

On-board calibration system (OBCS) enables the geophysical measurements

Earth-reflected Spectral Radiance Total Solar Irradiance

Solar/Lunar spectral irradiance

CSAR – a primary standard cryogenic radiometer on-orbit

Provides a primary standard reference for the on-board calibration system

Direct measure of the Total Solar Irradiance

165 mm

Interpreting & removing bias – Interoperability

But what is the Truth?

Traceability to CEOS + Cal/Val infrastructure

TRUTHS for inter-operability

Uncertainty budget for TRUTHS – satellite comparisons

(similar analysis results from Chander et al 2013 showing main Uc due to reference sensor and non-simultaneity) (single overpass – reduces for multiple overpasses)

Uncertainty	Best S2 bands	Worst S2 bands
Spectral resolution TRUTHS	0.1 %	0.6 %
Spectral accuracy TRUTHS	0.1 %	0.2 %
Spatial co-alignment mismatch	0.1 % (Libya) 0.12 % (La Crau)	0.1 % (Libya) 0.5 % (La Crau)
30 minute time difference (atmospheric effects)	0.1 % (if corrected) 0.3 % (if atmosphere not known)	0.1 % (if corrected) 2 % (if atmosphere not known)
30 minute time difference (surface BRF)	0.2 %	0.4 %
Combined with reasonable corrections	0.4 % - 0.5 %	0.7 %

Unmet potential in current EO investment

Emerging market for trustable climate services

Interoperability, integrating cubesats/commercial sensors into the mainstream public services

> Interoperability: ARD and data cubes

Economically argued 'green' investment

Quality data underpinned by UK technology

'Trustable' EO/Climate services

Measurement confidence 'traceability' the top of the EO agenda

The Need

Unquantified drift in the accuracy of key sensors

Climate sensitivity predictions are too wide

Low cost access to space and climate data

Trustability , litigation quality, data and services

Raising functionality of Copernicus & services

Public engagement in science and climate

Encouragement to other Geographical regions: towards building a spacebased climate – calibration 'constellation'

The Benefits

Science/policy exploitation

Major contribution to CEOS/GSICS/GEO