Operational Offshore Platform monitoring

COSMO-SkyMed x 3 What does "InSAR technology" mean? Radar satellites Second measurement **First measurement** Results (afterwards) Ground motion Superimposition n terferometric of waves to detect differences S ynthetic June & December 2007, October 2008 A perture **High resolution** = cm Owner: Italian Space Agency radar system Frequency: X-band R adar 0.5 cm TerraSAR-X ⊦0 cm - 0.5 cm cm Ground movement time series Difference between **Travel phase** two measurements between ground indicates ground For a specific point and sensor gives Ascending Descending movement over Launch: June 2007 millimetric distance 1 21 1 11 11 31 40 20 30 10 20 30 9 19 29 8 18 26 8 19 2 Owner: German Space Agency time Frequency: X-band **Offshore Platform North** Detected movement Sea Ground movement is measured >13/03/2008 to 26/04/2008 with radar satellites, comparing satellite distance at different Account dated Real Property and moments in time

Courtesy: Altamira Information technology

OGEO, EO4OG, EO Portal and more ...

The portal still exists : http://www.ogeo-portal.eu/

EQ40 meet produ

produ in a n upon

by "th 2000 taxor

It is fully linked with the EARSC EO portal – but secured; OGEO members can see all EARSC content – but OGEO content is secured from non-**OGEO** logins, unless allowed

=> Free & public information !

An Assessment of Surface Surveillance Capabilities for Oil Spill Response using Satellite Remote Sensing

Provided for IPIECA and OGP

EO4OG			duces church	inges visualiz	
040G defined products to leet the challenges. Each roduct is defined by a roduct sheet which will open I a new window when clicked pon.	V Generic Click or start typing	Click or start ty	sector Click or	start typing 50	
	Product	Generic	Thematic	Sector	EO Service
	Agricultural land	on-shore	Land	Ecosystems	Assess environmental impact of human activities
e products are categorised "thematic" and "sector cording to the EARSC xonomy.	Asset Monitoring	on-shore	Built environment	Infrastructure	Asset infrastructure monitoring
	Bathymetry	off-shore	Marine	Coastal	Map water depth or charting
	Building inventory	on-shore	Built environment	Infrastructure	Monitor construction and buildings
	Chlorophyll-a concentration (Qualitative)	off-shore	Marine	Ecosystems	Monitor ocean quality and productivity
	Chlorophyll-a concentration (Quantitative)	off-shore	Marine	Ecosystems	Monitor ocean quality and productivity
	Coastal land cover	off-shore	Marine	Coastal	Monitor the coast line
	2			and and	in the second second second

The O&G industry is actively engaging with stake holders to develop good practise guidelines and synergise efforts

EO4OG – example product sheet – iceberg monitoring

EO,OG PROJECT @esa

Iceberg Monitoring

Different satellite sensors are available to detected and monitor icebergs, including SAR and optical systems, as well as satellite altimeters. Operational monitoring typically involved the analysis of single and multiple images in near realtime (NRT). Historical data are analyzed to provide a statistical perspective of the size distribution and variability of iceberg populations.

Current Use:

- Historical analysis for environmental characterization, ice management specifications and platform design
- Operational monitoring in NRT for exploration and production
- EO especially useful when monitoring large, remote areas with limited infrastructure and surveillance capacity and limited existing information on iceberg occurrence

Geo-Information Requirements	This product relates to the following challenges: • CLS_4.1: SAR imagery to detect ships and icebergs			
Thematic Information Content	Iceberg size [m], location [lat/long], shape characteristics, classification [ship/iceberg], detection and classification confidence [low, medium, high], spatio-temporal size distributions			
Spatial Resolution	5 m to 1 km (dependent on user needs and available/selected source satellite data)			
Spatial Coverage	Varies depending on user requirements from 20 km swath to transit route exceeding 1500 km			
Minimum Mapping Unit (MMU)	Desire to detect icebergs 1 m and larger, but choice of data dictates what size icebergs will be detectable			
Temporal Resolution	Range from a single pre-season survey to daily coverage			
Geographic Coverage	Arctic and sub-Arctic areas Antarctic and Southern Ocean			
Timeliness	NRT or archival processing (depending on user requirements); NRT product availability typically within 3 hours of sensing			
Accuracy	 Probability of detection and classification <80% to >95% (depends on sea state and imaging mode) Geometric accuracy: +/- 1 to 5 pixels (depending on geospatial reference data and sensor spatial resolution) 			
Data Format	Vector polygons, gridded or plain text formats based on user requirements Historical analysis typically provided as report			
Data Access	Restricted access through commercial suppliers			
Validation Approach	Comparison with high resolution optical images, aerial surveillance and vessel- based observations Geometric accuracy assessed with geospatial reference data			

EO,OG PROJECT @esa

Method	CFAR/thresholding technique for detection in open water; principal data source is SAR imagery Detection in sea ice uses more advanced and non-standard methods (e.g. quad-pol SAR data)				
Degree of Automation	Automated detection followed by manual quality control Detection in sea ice requires additional analyst interaction				
EO Input Data	e.g. LANDSAT-8: MODIS;SPOT; Quickbird; IKONOS; ENVISAT (archival); RADARSAT- 2; TerraSAR-X; COSMO SkyMed; CryoSAT, Jason-1/2				
Non-EO Input Data	Training information for supervised detection and classification Land and space-based AIS data				
Contribution of EO	Major: this product is primarily based on EO imagery verified with aerial or other validation data				
Data Source	EO data: imagery providers Non-EO data: user,				
Prospects	High reliance on EO data especially during pre-license and exploration stages. During production EO data will be useful for planning rather than lactical operations				
Maturity and availability	For SAR and optical systems, TRL = 7 For satellite altimeters, TRL = 5 to 6 Product available from commercial suppliers on demand and publically available data snurros also available				
Constraints and Limitations	Cloud cover limits of ground truth/training data collection and optical image collection Radar images require interpretation and can be challenging when there are high sea states or precipitation Altimeter data can only detect larger icebergs, has limited target discrimination capabilities and does not fully cover an area of interest AlS useful for target discrimination, but only required on larger vessels and vessels may turn AIS transponders off				
References	 WMO (World Meteorological Organization) (1970) WMO sea-ice nomenclature. WMO/OMM/BMO No 259. TP.145, Geneva Power, D., Bobby, P., Howell, C., Ralph, F., Randell, C. (2011). State of the Art in Satelilia Surveillance of loabergs and Sea Ice, Arctic Technology Conference. Bobby, P., Bruce, J., Power, D., & Fournier, N. (2012, December 3). Historical Analysis of Ice Conditions for Risk Assessment. Offshore Technology Conference 				
Applicable	WMO 259, WMO 574; products for oil and gas industry are based on augmented versions of existing standards				

Currently in progress : EO4SD

ESA lead Industry engagement project to focus potential EO based solutions to O&G issues

In-situ metocean observations very limited hence wave, current and sea ice models have limited skill (IMarEST, p16)

Arctic Operations Handbook concludes:

The following main operational gaps in standards and guides have been found related to metocean and ice:

- Wind and current monitoring
- Temperature monitoring and the effects of ice spray on personnel exposure
- Weather windows and metocean and ice conditions for different operational seasons
- Sea ice and iceberg data and monitoring. Satellite imagery may need to be enhanced providing higher frequency, more coverage and better resolution
- Ice behaviour and ice drift monitoring and forecasting

Outlook and Knowledge Gaps – oil spill

From IOGP Arctic Response Technology Report – Remote Sensing

- Validate and test currently operational technologies in ice conditions
 - Hyperspectral / laser / microwave systems
- Integrate networks of multiple sensors
 - No single technology suitable for all aspects of oil in ice detection
 - Satellite, aerial, surface and subsurface technologies
 - Integrate data streams with accurate geo-positioning
- Improve and automate detection algorithms and provide rapidly readily assimilated products for responder actions
- Develop standards for output products with stakeholders

We have the scientists, we have the skills, we have the knowledge We need programmes and resources to develop, establish & implement good practise guides ... for all operations in the artic environment not only for oil & gas

before we start operating there !

Questions ??

A new dawn in Earth Observation on all levels will bring:

- Better spatial detail & more often
- More spectral channels & radar choices
- Continuous time series for optical & radar
- Data multiple times a day & fully integrated
- Near real time access to new and archive data

Science mission (s) to expand knowledge for operational services in the Arctic needed

The bigger picture: only possible with satellites

[m]

[m]

Successful ESA mission addressing larger scale phenomena

References

Arctic Operations Handbook, 2013

http://www.arctic-operationshandbook.info/pdf/Arctic%20Marine%20Operations%20Report.pdf

IMarEST: Safety & sustainability of shipping and offshore activities in the Arctic. 2015.

http://www.imarest.org/policy-news/newsroom-press/item/2572-report-availablesafety-sustainability-of-shipping-and-offshore-activities-in-the-arctic

IOGP: HSE Guidelines for Metocean and Arctic surveys, Report 447, Oct 2011.

http://www.ogp.org.uk/pubs/447.pdf

IOGP: Detection of oil on-in-and-under ice. Final Report. Arctic Response Technology – Oil Spill Preparedness JIP. Jan 2016 http://www.arcticresponsetechnology.org

IMO: Polar Code

ISO: 19906 Petroleum & natural gas industries – Arctic offshore structures. 1st Edn. 2010 www.iso.org/iso/catalogue_detail

Prepared by C-CORE, Polar Imaging Limited, Bear Ice

EO info > https://www.polarview.org/news-press/polar-view-awarded-polaris-project/