SEASTAR: a new satellite mission to observe sub-mesoscale ocean surface currents & atmosphere/ocean coupling

Adrien Martin¹, Christine Gommenginger¹ Bertrand Chapron², Jose Marquez³, Sam Doody³, Geoff Burbidge³

> ¹National Oceanography Centre ²Ifremer (France) ³Airbus Defence & Space Ltd

Context & Content

- New satellite mission concept SEASTAR
 - Also known as Wavemill or Ocean Surface Current Mission (OSCM)
 - In preparation for submission to ESA Earth Explorer

• Content of this talk:

- Science drivers & objectives of SEASTAR
- Observation concept
- ESA Earth Explorer call for missions
- Science Readiness Levels: SEASTAR results and status
- Summary & Outlook

Ubiquitous sub-mesoscale ocean variability

- Ocean is dominated by variability at the mesoscale (10-100km) and sub-mesoscale (1-10km)
- Observational evidence of the critical role for mixing of km-scale stirring by submesoscale eddies
- Seen in high-resolution IR SST and ocean colour images but little data on ocean dynamics at these scales
- Relevant to upper ocean dynamics & atmosphere/ocean coupling
- Generally not explicitly resolved by ocean and climate models

SEASTAR Scientific Objectives

- To deliver new two-dimensional maps of <u>total ocean surface</u> <u>current and wind vectors</u> at <u>1km resolution</u> to study submesoscale ocean dynamics and air-sea interactions at small scales
- To determine the spatial and temporal characteristics of the ocean submesoscale in the <u>global coastal zone</u>, the <u>Arctic</u> <u>margins</u> and ocean <u>Sites of Special Scientific Interest</u>.
- To contribute to <u>validating high-resolution ocean and</u> <u>atmospheric models</u> and support the development of <u>better</u> <u>model parameterisations</u> to represent the impact of the submesoscale on circulation models, air-sea interactions and vertical transports on basin to climate scales.

SEASTAR Observation & mission concept

- Squinted Along-Track Interferometric SAR
 - Active microwave; Ku-band (2.2cm)
 - Single-pass along-track interferometry between two successive SAR images provides direct estimates of ocean surface motion
 - Each scene viewed from two azimuth angles to get motion vector

SEASTAR Payload overview

- Along-track Interferometric SAR
 - Monostatic master, bistatic slave
 - Physical baseline 15m, total length ~22.5m
 - VV and HH polarisation
 - Javelin configuration
 - Leaky waveguide antennas
 - 2 x 7m long antennas
 - Elevation beam shaping
- Architecturally simple
 - Centralised power source, realistic design, largely available and identified technologies

• Large mission

3.5m

3.5m

Earth Explorer Core class

3.5m

~22.5m Deployed

- Challenging requirements on:
 - power (swath width)
 - data storage/downlink (duty cycle)

3.5m

- baseline & attitude knowledge (relative error)
- stability (absolute error)
- All components TRL >= 4 except leaky waveguide
- ROM cost ~250MEuros + launch

ESA Earth Explorer call for missions

• Earth Explorer 9 (Nov 2015)

- Scientific excellence & innovative technology
- <u>120 M€ max</u> for space segment
- Vega <u>dual-launch</u> as baseline
- TRL at least 4, reaching at least 5 by end of Phase-B1
- launch no later than 2024
- Scientific Readiness Level (SRL) at least 4

• Revised EE9 (Dec 2016)

- Same as above except...
- 150 M€ max for space segment
- Scientific Readiness Level (SRL) between 4 & 6 (peer-review papers)

- CEOI support to downsize SEASTAR & increase SRL
 - Reduce volume, data, cost

- But reduction of swath & duty cycle made mission unviable scientifically
- Decision to wait for EE10...

Science Readiness Levels: SEASTAR status

Phase F	
Phase E2	
Phase E1	
Phase B, C, D	
Phase A	
Phase 0	
(Pre -) Phase 0	
Pre – Phase 0	
Pre – Phase 0	

Science Impact Quantification Validated and Matured Science Demonstrated Science Consolidated Science and Products End-to-End Performance Simulations Proof of Concept Scientific and Observation Requirements Consolidation of Scientific Ideas Initial Scientific Idea SRL 5: "An end-to-end measurement performance simulator is developed, tested and validated using realistic and/or actual measurements";

"Retrieval algorithms are demonstrated.."

SRL 4: "... A model linking geophysical parameters and measurements is established...";

"Sensitivity of the measurements to the targeted geophysical parameter is demonstrated"

National Oceanography Centre

8

7

6

5

4

3

Airborne proof-of-concept

 Processing from single-look complex images to interferograms

Martin et al., JGR, 2016

Geophysical retrieval: Sensitivity of SAR to wind waves

Processing from interferograms to surface current vectors

120 150 180 210 240 270 300 330 360 Azimuth Angle (°)

[Mouche et al., 2012] based on Envisat ASAR satellite data

Oceanography Centre ATURAL ENVIRONMENT RESEARCH COUNCIL

Geophysical inversion for joint current & wind retrieval

$$J_{pol}(\vec{u_{10}}, \vec{c}) = \sum_{i=1,2} \left(\frac{\sigma_{meas,i}^0 - KuMod(\vec{u_{10}} - \vec{c})}{\Delta \sigma^0} \right)^2 + \left(\frac{df_{meas,i} - KuDop(\vec{u_{10}} - \vec{c}) + 2.c_{//}.\sin\theta/\lambda_e)}{\Delta df} \right)^2$$

- Bayesian approach, minimization of the cost function
- Geophysical Model Functions (GMF):
 - NRCS KuMod from NSCAT
 - Doppler frequency KuDop from Envisat CDOP scaled for Ku-band

• Assumptions:

- No impact of wind/wave/current interactions on NRCS and Doppler
- Effect of breaking wave effects included in GMF

Martin et al., RSE, in prep

Retrieval performance: numerical results

ATURAL ENVIRONMENT RESEARCH COUNCIL

RMS error on current speed & direction

13

ACE

Summary

- SEASTAR is an innovative mission concept that proposes to deliver maps of ocean surface current and wind vectors, simultaneously for the first time, at a resolution of 1km
 - The mission is highly relevant to present-day research about the role of the ocean sub-mesoscale
 - The concept was demonstrated with airborne data, revealing excellent data quality
 - Also led to major progress in quantifying the impact of wind waves on measurements
 - Current retrieval at a precision of 0.1 m/s, 7°
- SEASTAR is an Earth Explorer Core class
 - Unsuitable for EE9 (and revised EE9)
 - Hopefully suitable for EE10 (late 2017-early 2018?)

Outlook

- SEASTAR urgently needs more airborne campaigns
 - Results all obtained with 1 day of data in coastal and atypical current/wind/wave conditions
 - Need to assess performance in other conditions e.g. swell, wave breaking,...
 - Need to demonstrate the value of multiple polarisation
 - Test flight with ESA OSCAR system in late 2017? (unlikely)
- CEOI-supported activities to refine the geophysical inversion revealed performance issues of existing concept when the wind is aligned with the squinted line-of-sight
 - New three-look configuration under study
 - Concept continues to evolve thanks to ongoing partnership with Airbus D&S Ltd and Ifremer

Thank You

For more information, contact: Adrien Martin: <u>admartin@noc.ac.uk</u> Christine Gommenginger: <u>cg1@noc.ac.uk</u> National Oceanography Centre Southampton, UK

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Additional slides

National Oceanography Centre

Wavemill airborne demonstration Validation against ground-truth in Liverpool Bay

Geophysical conditions during the flight campaign

10

HF radar & POLCOMS vs. Wavemill

