

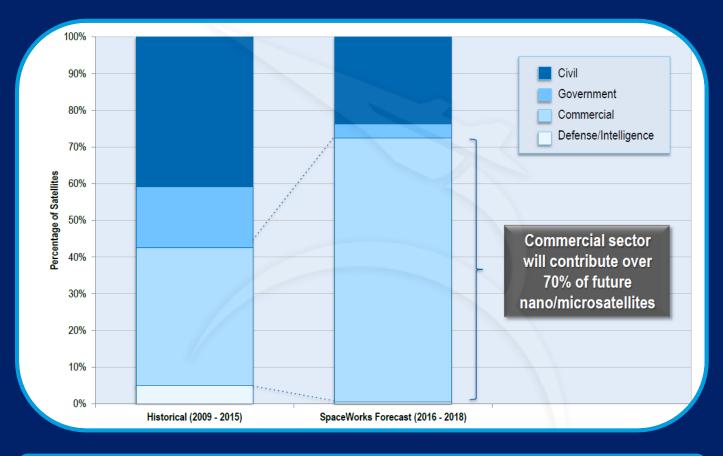
CubeSat Capability: Enabling EO Mission Cost Reduction 4th CEOI Emerging Technologies Workshop, Cosener's House 2017 Alasdair J. Gow, Spacecraft Sales Engineer

Outline

Our Market Vision

Who Are Clyde Space?

Our Missions: EO Case Studies


Emerging Technologies

Conclusion

A Changing Market Demographic

- University and scientific projects no longer the primary consumers of CubeSat platforms and technologies
- Maturity and capability of modern CubeSats now offer opportunities for successful commercial applications
- Increasing number of CubeSats for commercial customers, and increasing number of constellations

Source: SpaceWorks Nano/Microsatellite Market Forecast 2016

A Changing Market Demographic

0

2017

- University and scientific projects no longer the primary consumers of CubeSat platforms and technologies
- Maturity and capability of modern CubeSats now offer opportunities for successful commercial applications
- Increasing number of CubeSats for commercial customers, and increasing number of constellations

No. Satellites Planned by Stakeholders Already Engaged with Clyde Space Ltd. 160 140 120 Number of Satellites 8 60 40 20

2018

Year

2019

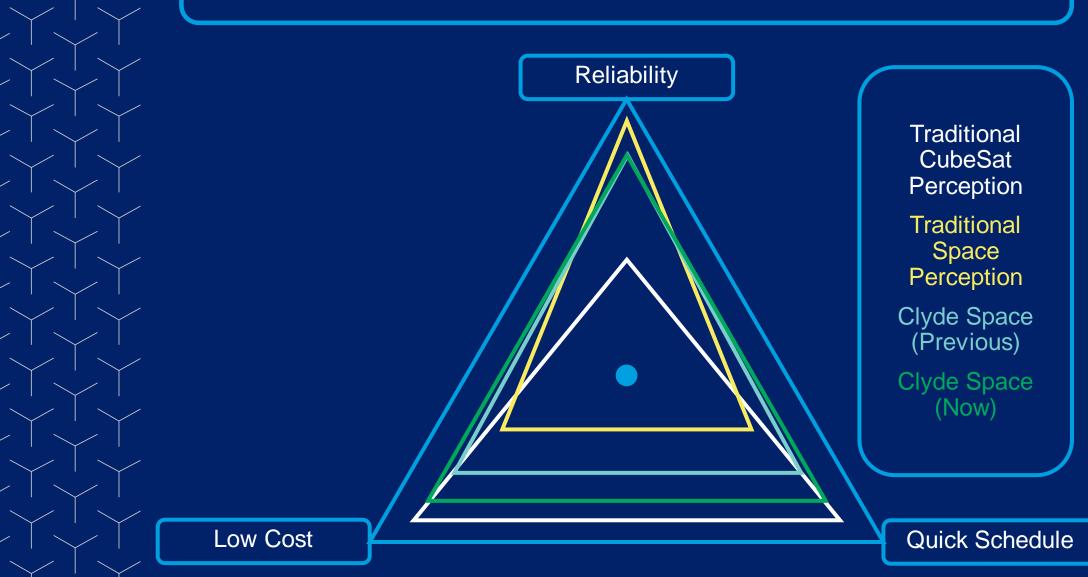
A Positive Feedback Loop

New and miniaturised technologies unlock new capabilities Commercial Customers:

New capabilities enable novel applications, requiring constellations

Volume orders demand mass manufacturing processes

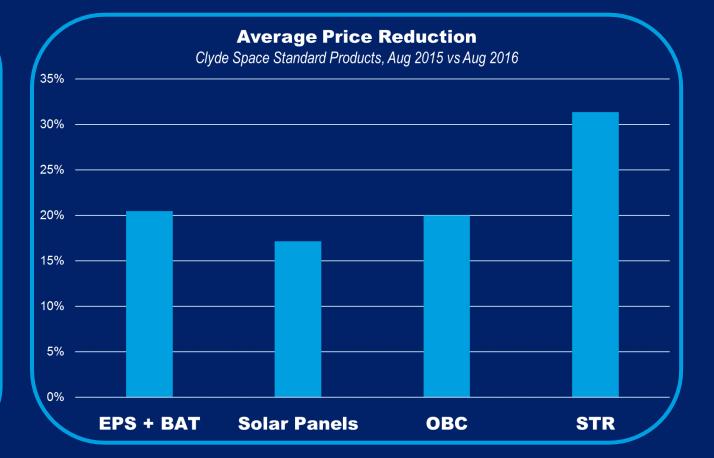
Civil & Academia: Low cost enables more technology demonstration missions


Volume manufacturing drives down costs

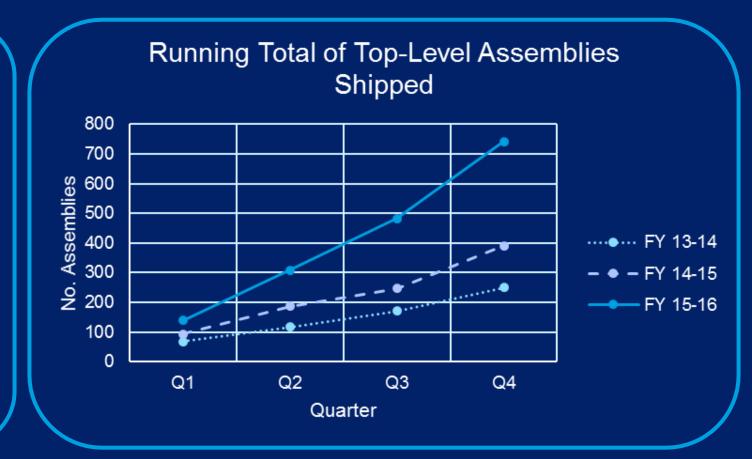
CubeSat Hardware Manufacturers:

Volume manufacturing of reliable products

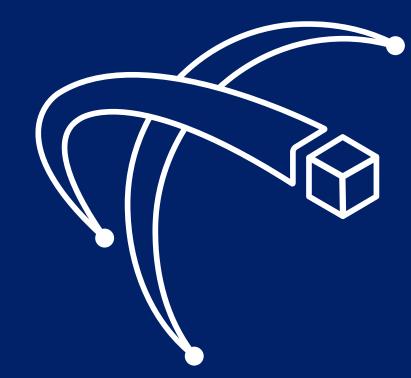
"Pick Two"?


 \bigcirc

Seeing Results


 Standard product pricing reduced by ~20% on average since same time last year

 Despite staff increase ~40% over same period



Seeing Results

- Number of units shipped per quarter tripled since introduction of new processes
- Top-level assemblies: composed of 1.99 individual subsystem units on average

WHO ARE CLYDE SPACE

Introduction to Clyde Space

One of the UK's leading space companies:

- Prime contractor UKube-1
- Space Leadership Council
- IPSP & IPP Projects 5
- Award winning

ISO 9001:2008 accredited Quality Management

Global leader in CubeSats, with hardware on c40% of CubeSat missions

Over 10 years experience in spacecraft subsystems

Regarded as having more hardware in space than any other small satellite provider

Broad space capability:

- Subsystems
- Platforms
- End-to-end missions
- Constellation design and implementation

World's leading supplier of small spacecraft power systems

COTS Subsystems

- Hundreds of units supplied: world's most popular CubeSat Power System Components
- **Power Systems:** EPS, Batteries, Deployable Solar Panels
- Attitude Control: Processing units and algorithms, reaction wheels, thrusters
- On-Board Computers
- Structures
- **Partners:** Comms, software, sensors

Systems available for CubeSats, Nanosatellites,

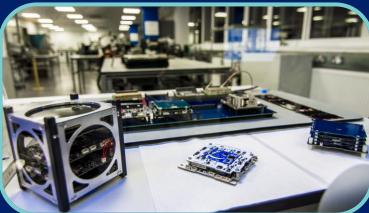
and larger Small Satellites

Bespoke Subsystems

- Clyde Space founded by former head of power systems at SSTL
 - Strong heritage of power system development
- 2-3kW, 100A SA Input SmallGEO and 500W, 15A SmallSat power systems available
 - Standardised designs with heritage, configurable to your mission
- Fully bespoke systems also available

Solar Panels

- We have produced nearly 1000 solar panels over the past ten years
- Over 50 years of combined flight heritage
- No known failures
- Solar panel manufacturing process recently audited by ESA ahead of contract award
- Primarily use Spectrolab UTJ cells, but familiar with other cell types including Azur Space and Emcore.
- Al honeycomb cores, Al or carbon fibre skins
 - Have also used hybrid PCB on Al approach, and PCB-only for CubeSats


Batteries, ADCS, and other systems also available

CubeSat Platforms & Turn-Key Missions

- Currently producing 6 spacecraft per month
- Reference designs from 1U – 12U allow for rapid development
- Customised platform designs tailored to mission requirements
- COTS subsystems = low cost

Volume manufacturing approach enables cost-effective production of large-scale constellations

- First 3U platform UKube-1 featured SIX different payloads
- Clyde-Built Spacecraft continue to reside amongst the most advanced examples

Delivering Quality

We have a high quality skills base within engineering and manufacturing

ESA qualified assembly technicians and inspectors perform and inspect conventional and surfacemount solder assembly, repair and modification operations in conformance with ECSS-Q-ST-70-08, ECSS-Q-ST-70-28 and ECSS-Q-ST-70-38.

ISO9001:2008 accredited Quality Management System that is based on ECSS guidelines

Scalable approach to Quality: tailored implementation of ECSS for CubeSats, but inherent capability to work to full ECSS or NASA requirements when necessary.

OUR MISSIONS

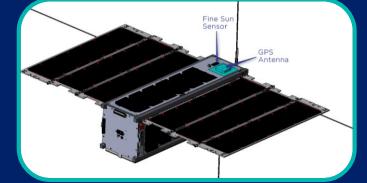
Other CubeSat Missions

UKube-1 – Tech Demo Platform

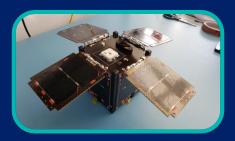
- Complex 6-payload 3U CubeSat for UK Space Agency
- Successfully launched 8th July 2014, currently operational

Outernet – Communication Platform

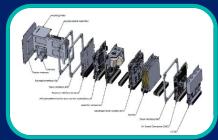
- 3x 1U CubeSats + 1x 3U for the Outernet project
- Funded through UK Space Agency's International Partnerships in Space Programme (IPSP)

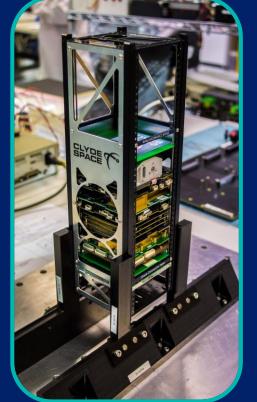

Project DaVinci

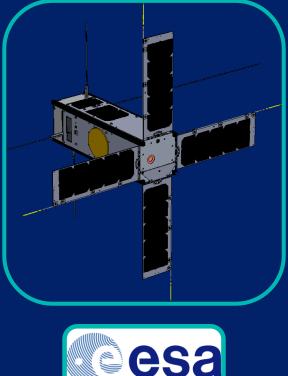
1x 3U CubeSat for US STEM outreach programme


Kepler Communications

2x 3U CubeSats for high-power communications mission






KEPLER

PICASSO

- 3U CubeSat designed, integrated, tested, and operated by Clyde Space
- Remote and in-situ measurements of Earth's atmosphere
- ESA-grade science return
 - VISION: miniaturised hyperspectral imager

PICASSO will be launched towards the end of 2017

SeaHawk

- Delivering 2x 3U CubeSats with HawkEye payload as a technology demonstrator
- SOCON: Sustained Ocean Colour Observation from Nanosatellites
- Project Partners:
 - University of North Carolina Wilmington
 - Cloudland Instruments
 - Clyde Space
 - NASA Goddard Space Flight Center
 - Hawk Institute for Space Science
 - UK Astronomy Technology Centre

Funded by Gordon and Betty Moore Foundation

SeaHawk

- Delivering 2x 3U CubeSats with HawkEye payload as a technology demonstrator
- SOCON: Sustained Ocean Colour Observation from Nanosatellites
- Project Partners:
 - University of North Carolina Wilmington
 - Cloudland Instruments
 - Clyde Space
 - NASA Goddard Space Flight Center
 - Hawk Institute for Space Science
 - UK Astronomy Technology Centre

Funded by Gordon and Betty Moore Foundation

GODDARD SPACE FLIGHT CENTER

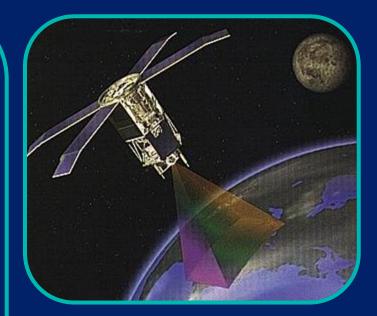
Physics and Physical Oceanography

Science & Technology Facilities Council UK Astronomy Technology Centre

SeaWIFS – Sea-Viewing Wide Field-of-View Sensor

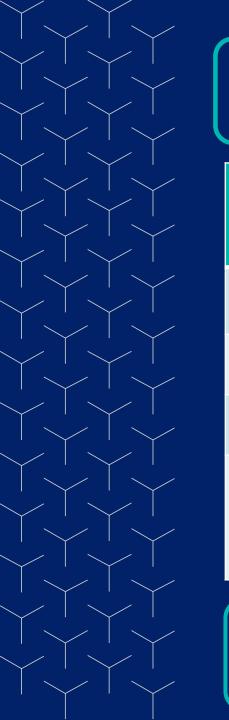
- SeaHawk will provide both a replacement for and an improvement of previously benchmark OCM standard sensor.
 - 8 observation bands (range: 402-885nm)
 - Equator Crossing Noon +20 min, descending

2,801 km LAC/HRPT (58.3


1,502 km GAC (45 degrees)

665 kbps

- Orbital Period 99 minutes
- Swath Width degrees)

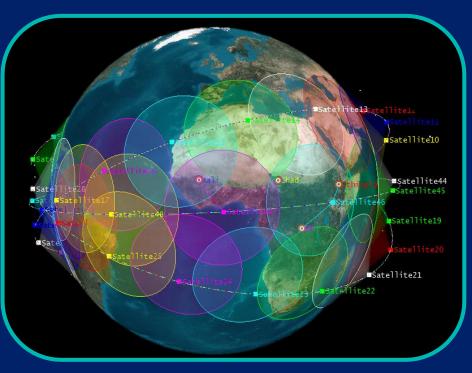

Cost:

- Swath Width
- Sensor resolution: 1km/pixel
- Real-Time Data Rate
- Revisit Time 1 day
- Digitization 10 bits
- Mass: 390kg
- Development time: >10 years
 - 14.1M USD

SeaHawk Take-Over Aims

- To observe in similar spectral bands as SeaWiFs.
- To achieve equivalent or better SNR performance
- To improve sensor resolution.
- Eventually achieving greater coverage and refresh rate.
- Provide Global Reference Data-set for Ocean Colour Science.
- All at substantially lower cost than SeaWiFs!

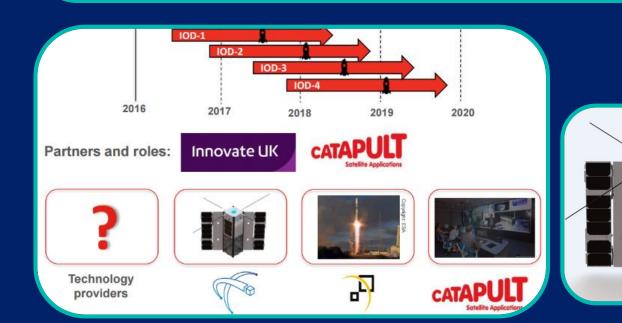
Comparison


	NASA SeaWiFs	SeaHawk	Comparison
Development Time	> 10 years	2 years	20%
Cost	\$14.1M	\$1.675M	12%
Mass	390kg	4kg	1%
Sensor Resolution	1km / pixel (Oceanographic)	150m – 75m / pixel (Coastal or Oceanographic)	7 – 15 times better

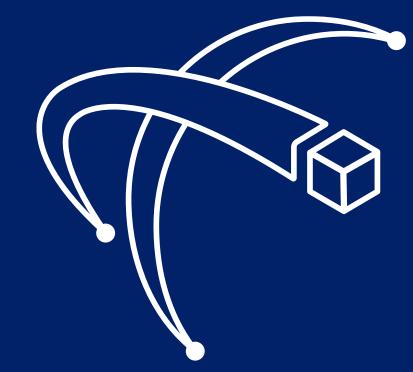
Moore's Law in space:

smaller, faster, cheaper – *better performance*

Example Costellation Performance


Typical Performance	Single CubeSat	Three-Plane CubeSat Constellation
# of CubeSats	1	48
Maximum Revisit Time	~ 12 Hours	~ 5 Minutes
Target Visibility	~ 1 Hour	>50 Hours

 \bigcirc


Catapult IOD Pilot Programme

- 4x 3U CubeSats for Satellite Applications Catapult
- 4 different payloads, 1 platform design
- Payloads sourced from industry & academia across the UK
- Funded by Satellite Applications Catapult, and continuing spirit of UKube-1

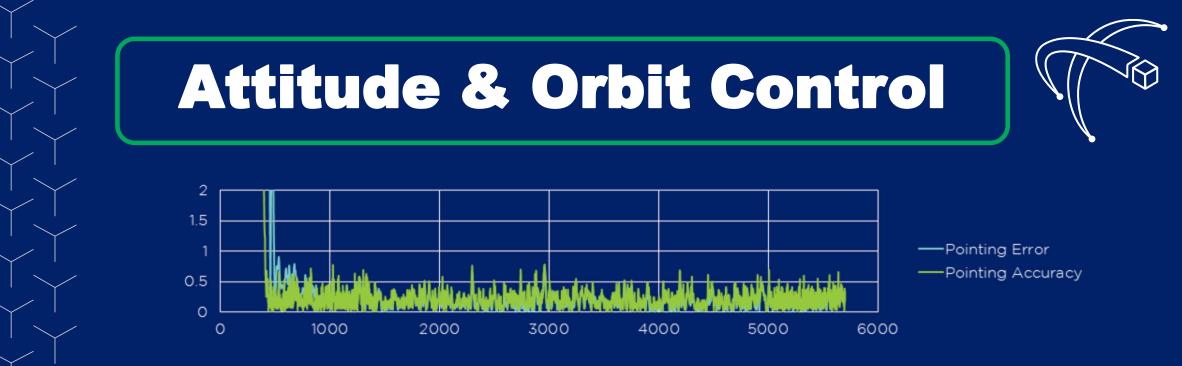
EMERGING TECHNOLOGIES

Power Generation

- Small size of CubeSats has traditionally limited available power – and thereby mission capability
- Deployable panels allow increased area and power generation
- Deployable panel technology continuing to advance: triple-deployables enabling 50W peak power generation from a 3U launching later in 2017

50+ sets of Clyde Space double-deployed panels currently on orbit with <u>zero</u> deployment failures

Power Generation


- Small size of CubeSats has traditionally limited available power – and thereby mission capability
- Deployable panels allow increased area and power generation
- Deployable panel technology continuing to advance: triple-deployables enabling 50W peak power generation from a 3U launching later in 2017

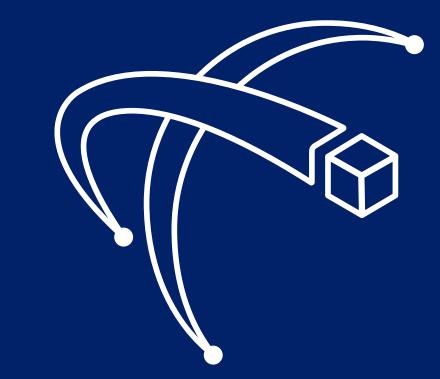
Clyde Space tripledeployed panels launching 2017

Larger CubeSats

- Power generation: larger area = larger solar panels
- Core spacecraft avionics unchanged: extra volume for batteries (power) and/or larger instruments
- 6U, 12U, 27Us in development

- Pointing Control
 - Active area of development: sub-degree accuracy currently achievable
 - Advanced control modes now possible including ground target tracking
- Propulsion
 - Large number of companies working on CubeSat propulsion technologies, for applications from simple orbit maintenance to formation flying and orbit raising

Other Technologies


- Thermal control
 - Passive and active thermal control options being investigated
- Deployable technologies
 - Wide variety of deployable technologies being developed for CubeSats
- Constellations
 - Low cost of CubeSat missions driving development of commercial EO constellations

Louvres for thermal control aboard NASA 6U Dellingr. Credit: NASA/W. Hrybyk

Lemur-2 CubeSats in Clyde Space cleanroom. Credit: Spire

CONCLUSION

Conclusion

- Nano/microsatellite market is becoming dominated by commercial constellations
 - Drives demand for high volumes, and reliability
- Clyde Space has already invested heavily and adapted in anticipation
 - Existing high quality now augmented with high volume capability
- Volume production drives down mission cost!
- Moore's Law and technology miniaturisation driving increase in CubeSat capability year-on-year

Any Questions?

@ClydeSpace
{
 ClydeSpace
 +ClydeSpace

info@Clyde.Space

Alasdair.Gow@Clyde.Space

www.Clyde.Space #Space/sAwesome