Filterbank spectrometers for Hyperspectral Microwave Atmospheric Sounding (HYMAS)

Peter Hargrave, Ben Flatman, Prateek Dongre – Cardiff University Stafford Withington – University of Cambridge Stefan Buehler, Lukas Kluft – University of Hamburg Bill Bell, Fiona Smith – UK Met Office

Universität Hamburg

Application areas

- Climatology the role of cloud feedbacks in the Global climate system
- Meteorology Full Global coverage measurements of temperature & humidity profiles with high (3-D) spatial resolution and accuracy

Climatology

Der Forschung i der Lehre i der Bildung

Global Warming Projections

Clouds in climate models

IPCC, 4th Assessment:

'In many climate models, details in the representation of clouds can substantially affect the model estimates of cloud feedback and climate sensitivity [...]. Moreover, the spread of climate sensitivity estimates among current models arises primarily from intermodel differences in sloud feedbacks [...]. Therefore, cloud feedbacks remain the largest source of uncertainty in climate sensitivity estimates.'

UNI Review article: CA Stephens [JC, 2005]

- **IWP [g/m2]** = vertically integrated "Ice Water Content" (IWC). Zonal mean over 100 years.
- AR4-GISS*0.5 to bring to same scale.

Eliasson, S., S. A. Buehler, M. Milz, P. Eriksson, and V. O. John (2011), Assessing observed and modelled spatial distributions of ice water path using satellite data, *Atmos. Chem. Phys.*, 11, 375–391, doi:10.5194/acp-11-375-2011.

Particle size vs. wavelength

Sub-millimeter measurements can sample the size distribution.

NG I DER LEHRE I DER BILDUNG

\$1\$1\$ 000 \$1\$1\$

CAMBRIDGE

Met Office

In Brarche Caramacian

Meteorology

Der Forschung i der Lehre i der Bildung

Meterology – state of the art

IR sounders

- IASI
 - 8534 channels
 - 19-83 THz
 - NEDT 0.1 0.2 K
- Good performance, but limited to *clear sky conditions* only

MW sounders

- AMSU-A/B
- MWS, MWI on MetOp-SG
 - 13 channels
 - 18.7 229 GHz
 - NEDT 0.4 1.4 K
- Poor vertical resolution
- BUT can see down into cloud

h spatial resolution (3-D), low noise measurements of temperature and humidity are great demand for improving predictions from numerical weather prediction models

Universität Hamburg

Technology

Der Forschung i der Lehre i der Bildung

Natural multiplexing in KID devices

- · Each LEKID is a high Q micro-resonator with a tunable f0
- · We can therefore multiplex many LEKIDs onto a single CPW feed-line

- Large number of ultra sensitive detectors ≈ 600 detectors per pixel for R=700 to cover 195-305 GHz atmospheric window – Kinetic Inductance Detectors.
- Low loss high frequency transmission lines and antenna structures – Niobium (v_g ≈ 700 GHz) on low loss substrates such as Si₂N_x or Diamond
- Modern micro-fabrication techniques Deep UV / e-beam lithography

KID-based filterbank spectrometers

- Superspec (Caltech) 600 channels, 195-305 GHz, R~800
 - Shirokoff, E., et al. "Design and performance of superspec: An onchip, KID-based, mm-wavelength spectrometer." *Journal of Low Temperature Physics* 176.5-6 (2014): 657-662.
- DESHIMA (SRON, Netherlands) 5000-10000 channels, 320-950 GHz, R~1000
 - Endo, A., et al. "Design of an integrated filterbank for DESHIMA: Onchip submillimeter imaging spectrograph based on superconducting resonators." *Journal of Low Temperature Physics* 167.3-4 (2012): 341-346.

TES-based filterbank spectrometers

HYMAS concept – Cardiff University / University of Cambridge

TES-based filterbank spectrometers

HYMAS concept – Cardiff University / University of Cambridge

- Key advantages
 - Ultra-high sensitivity
 - Access to important 50-60 GHz O_2 lines

Universität Hamburg

Instrument concept

- Continuous coverage 50-850 GHz, R~1000 possible
- Channel optimisation study in progress
- Conical scanning, ~50° cone angle
- 75 cm primary aperture

Receiver system

3-4 filterbanks – 50-100 GHz, 100-200 GHz, 200-400 GHz, 400-800 GHz Prime & redundant channels

DER FORSCHUNG I DER LEHRE I DER BILDUNG

Cooling system

- Space heritage
 - Planck 4 K cooler
 - Herschel 300 mK sorption coolers

T.

Radiator design is a big focus area

hargravepc@cardiff.ac.uk

CEOI-ST

rformance predictions

- All benefits of both IR and MW sounders in 1 instrument
- Covers all channels of the 3 MetOp-SC instruments with much greater sensitivity and resolution (spatial and spectral)

rformance predictions

- Full Globe coverage in 24 Hrs
- Continuous spectral coverage 100-850 GHz possible - ~1000 channels at R~500

- - - -	(GHz)	Bandwidth (GHz)	Ground Resolution (km)	Background power (W)	Background limited NEP (WHz ^{-1/2})	Detector NEP (WHz ^{-1/2})	NEAT (K)
11	.6.75	0.234	4265	1.25E-13	6.23E-18	2.00E-17	0.006
11	7.15	0.234	4251	1.26E-13	6.25E-18	2.00E-17	0.006
11	.7.35	0.235	4244	1.26E-13	6.26E-18	2.00E-17	0.006
11	.7.55	0.235	4236	1.26E-13	6.27E-18	2.00E-17	0.006
11	.8.75	0.238	4194	1.27E-13	6.33E-18	2.00E-17	0.006
11	9.95	0.24	4152	1.29E-13	6.39E-18	2.00E-17	0.006
12	20.15	0.24	4145	1.29E-13	6.41E-18	2.00E-17	0.006
12	20.35	0.241	4138	1.29E-13	6.42E-18	2.00E-17	0.006
12	0.75	0.242	4124	1.30E-13	6.44E-18	2.00E-17	0.006
10	66.9	0.334	2984	1.78E-13	8.88E-18	2.00E-17	0.004
17	2.31	0.345	2890	1.84E-13	9.16E-18	2.00E-17	0.004
17	6.31	0.353	2824	1.88E-13	9.37E-18	2.00E-17	0.004
17	8.31	0.357	2793	1.90E-13	9.48E-18	2.00E-17	0.004
18	80.31	0.361	2762	1.92E-13	9.58E-18	2.00E-17	0.004
18	32.31	0.365	2731	1.94E-13	9.69E-18	2.00E-17	0.004
18	3.11	0.366	2719	1.95E-13	9.73E-18	2.00E-17	0.004
18	3.31	0.367	2716	1.95E-13	9.74E-18	2.00E-17	0.004
18	3.51	0.367	2713	1.96E-13	9.75E-18	2.00E-17	0.004
18	84.31	0.369	2702	1.96E-13	9.80E-18	2.00E-17	0.004
18	86.31	0.373	2673	1.99E-13	9.90E-18	2.00E-17	0.004
18	88.31	0.377	2644	2.01E-13	1.00E-17	2.00E-17	0.004
19	0.31	0.381	2616	2.03E-13	1.01E-17	2.00E-17	0.004
19	4.31	0.389	2563	2.07E-13	1.03E-17	2.00E-17	0.004
24	40.7	0.481	2069	2.55E-13	1.28E-17	2.00E-17	0.003
24	43.2	0.486	2047	2.58E-13	1.29E-17	2.00E-17	0.003
2	45.7	0.491	2027	2.60E-13	1.30E-17	2.00E-17	0.003
31	5.65	0.631	1577	3.32E-13	1.67E-17	2.00E-17	0.002
32	1.65	0.643	1548	3.38E-13	1.70E-17	2.00E-17	0.002
32	3 65	0.647	1538	3 40E-13	1 71E-17	2 00F-17	0.002

Metop-SG

MWS

Microwave Sounding

Objectives

- Temperature/humidity profiles in clear and cloudy air
- Cloud liquid water total column
- Imagery: precipitation

Heritage

AMSU-A, MHS

Baseline performance

- as AMSU/A, MHS
- horizontal resolution as ATMS

Implementation

- NOAA ATMS as baseline
- ESA development in Phase A as option

EUM/PEPS/VWG/11/0184 Issue 1 08/09/2011

MWI

Microwave Imaging

Objectives of a new mission

- precipitation and cloud products
- water vapour profiles and imagery . sea-ice, snow, sea surface wind

Heritage SSM/I(S), AMSR-E

Baseline performance 4 spectral channels as SSM/I (18.7 - 89 GHz)

Implementation ESA development

EUM/PEPS/VWG/11/0184 Issue 1 08/09/2011

Implementation ~2020

Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BILDUNG

Met Office

ICI: Ice Cloud Imaging

Objectives of a new mission

- Cloud products, in particular ice clouds
- Snowfall detection and quantification
- . Water-vapour profiles and imagery

Aura-MLS, Odin-SMR (both limb viewing)

Baseline performance

- Conically scanning
- - 11 spectral channels
 - 183 664 GHz

ESA development

EUM/PEPS/VWG/11/0184 Issue 1 08/09/2011

CEOI-ST

- **Establishes operational ice-cloud** imaging mission
- Support of weather forecast, hydrology, and climate monitoring

Heritage

RS5 (2011)

- Nadir-viewing geometry

Implementation

Breakthrough: 11 channels

Summary and Conclusions

- A TES/KID based hyperspectral microwave instrument will have temperature and humidity retrieval performance equivalent or better than current & future hyperspectral IR instruments
- Not limited to clear sky conditions
- Would provide information on hydrometeor content, much better than ICI on Metop-SG – excellent constraint of essential climate variables

Thank you!

Der Forschung i der Lehre i der Bildung

Satellite instrument concept - Orbit 817 km, SSO, near polar, 09.30 ascending node

