

THz Quantum-Cascade Lasers for Heterodyne Techniques

Alexander Valavanis

School of Electronic & Electrical Engineering University of Leeds

a.valavanis@leeds.ac.uk

Overview

- •LOCUS "supra-terahertz" radiometry channels
- •THz quantum-cascade lasers
- •Waveguide integrated THz QCL systems

LOCUS – Linking Observations of Climate, the Upper-atmosphere and Space-weather

A breakthrough THz remote sounder www.locussatellite.com

- Compact payload for small satellite
- Measure key species in mesosphere & lower thermosphere
- "Gateway" between Earth atmosphere & near-space
- Increase understanding of natural & anthropogenic effects on climate change

UNIVERSITY OF LEEDS

Integrated, compact and efficient source of THz radiation are needed

Radiometry system architecture

System schematic

THz LO requirements

- •1 mW local-oscillator output power
- Compact, low-mass
- •Low input power (< 5 W)
- •Fully integrated within satellite-ready cryo-cooler
- •4 GHz tunability

THz radiation sources

The meeting point between optics and electronics

THz radiation sources

UNIVERSITY OF LEEDS

M. Tonouchi, Nature Photonics, 1, 97 (2007)

THz Quantum cascade lasers (QCLs) are the only compact & high-powered coherent THz sources.

IMPATT – Impact Ionization Avalanche Transit-Time diode HG – Harmonic Generation RTD – Resonant-Tunnelling Diode TPO – THz Parametric Oscillator PCS – Photoconductive Switch QCL – Quantum Cascade Laser

THz semiconductor lasers

UNIVERSITY OF LEEDS

Semiconductor device requirements:

- Low enough energy level separation for THz photon emission
- More electrons at high energy than low energy (i.e., a population inversion)

 $h\nu = \hbar\omega \downarrow 0 = E \downarrow 2 - E \downarrow 1$ $h=4.14 \times 107 - 15 \ eVs$ =4.14 meV / THz

Absorption occurs: Emission occurs: If particle is initially in low-energy state If particle is initially in high-energy state

Conventional laser diodes

Both electrons and holes involved in (stimulated) emission of photons (bipolar device). One photon per electron (ideally).

Minimum photon energy = semiconductor bandgap

THz emission impossible with conventional bulk semiconductors

Quantum cascade lasers

The solution: use nanoscale layers. Quantum-confinement gives customisable band energies

Intersubband transitions in quantum wells

•Long-wavelength emission—Not bandgap limited

•Periodic system: electron 'recycling'

Quantum cascade lasers

The first powerful and compact continuous-wave THz source:

- ~1000 semiconductor layers, grown using molecular-beam epitaxy
- "Electron-recycling" → efficient THz generation
- 1 W pulsed THz power; ~100 mW continuous-wave
- 1–5 THz range

Peak THz power corresponds to efficient injection of current:

- Lower "upstream" energy bands align with upper "downstream" bands
- Population inversion yields THz gain

LOCUS Core Technology **UNIVERSITY OF LEEDS** 3.5 & 4.7 THz QCL Schottky Barrier Diode Local Oscillators & Space Coolers RAL University of Leeds UK also leading LOCUS science definition via **Small Satellite Digital Spectrometer** STAR-Dundee Surrey Satellites Ltd Leeds, UCL and RAL

Recent integration approaches

UNIVERSITY OF LEEDS

QCL + waveguide + horn antenna Justen et al., 26th Int. Symp. Space THz Tech (2015)

QCL + HEB mixer

Miao et al., *Opt. Express* **23**, 4453 (2015)

QCL + Schottky mixer (monolithic)

Wanke et al., *Nat. Photon.* **4**, 565 (2010)

LOCUS integration design

UNIVERSITY OF LEEDS

- Double metal 3.5 THz QCL
- Precision-micromachined 300 × 150 µm Cu waveguide
- High-frequency electronic ribbon-bonding + SMA
- Integrated temperature sensor

CW characterisation

Mounted

Unmounted

CW characterisation

UNIVERSITY OF LEEDS

Block integration concept works! Minimal change in threshold current or maximum operating temperature.

Collected THz power reduced to ~20%... Optimisation needed!

Waveguide integrated QCLs

UNIVERSITY OF LEEDS

Far-field THz beam-pattern significantly improved:

- Almost Gaussian profile
- Divergence = 17.1-deg (in-plane) / 19.7-deg (growth direction)
- Dramatic improvement over unmounted QCL (~120-deg)
- Underpins future systems with **no external optics** Valavanis et al., *Electron. Lett.* **51**, 919 (2015)

QCL optimisation

В

3.31-3.58

3.10

134/133

2.6/0.41

135/86

Feedhorn integration

Diagonal horn-antenna with optimised QCL + waveguide

Preliminary results:

- 8.2 mW output power
- 127 K pulsed operation (80 K, cw)
- 6.2 mW @ 77 K (1 mW, cw)

Thin QCL substrates

Reducing substrate thickness allows direct mounting of QCL in waveguide channel, and reduced power dissipation.

P_dis: 3.1 W

Device: 980µm×75µm×15µm Substrate: 90 µm **T_max:** 85 K **P_dis:** 2.3 W

Cryo-cooler performance

3.5-THz QCL mounted in RAL Sterling cooler

Cryo-cooler performance

3.5-THz QCL mounted in RAL Sterling cooler

Cryo-cooler performance

3.5-THz QCL mounted in RAL Sterling cooler

•Stable QCL operation at 65 K

•1 mW THz power out-coupled from cryo-cooler into detector

Dual-feedhorn design

UNIVERSITY OF LEEDS

- Dual-feedhorn design enables simultaneous access to **both facets** of QCL
- Will enable coupling with mixer and stabilisation subsystem

Dual-feedhorn design

- Cryo-cooler operation
 demonstrated
- Diffraction/interference pattern
 observed
 - Coherent beam collection
 from both facets

Future perspectives

- Successful waveguide integration of QCLs has been demonstrated
- Key subsequent development steps:
 - Complete system breadboarding
 - Stabilisation subsystem integration
 - Mixer integration
 - Airborne/in-orbit demonstration

Summary

UNIVERSITY OF LEEDS

- LOCUS: A breakthrough THz limb sounder concept
- **THz QCLs:** The first compact, yet powerful direct THz sources
- Waveguide integration of QCLs: Progress towards complete THz radiometry systems in compact waveguide blocks, underpinning future satellite applications.

Funding acknowledgments

- •CEOI-ST (7th, 8th and 10th call)
- •EPSRC (UK) COTS
- •ESA GSTP
- Royal Society & Wolfson foundationERC
- •STFC Centre for Instrumentation

Colleagues and collaborators

STFC Rutherford Appleton Laboratories
(*B. N. Ellison, O. Auriacombe, T. Rawlings, B. Alderman, P. Huggard*)
University of Leeds (*Y. J. Han, J. R. Freeman, L. H. Li, E. H. Linfield, A. G. Davies*)