

THE DESIGN AND DEVELOPMENT OF LOW- AND HIGH-VOLTAGE ASICS FOR SPACE-BORNE CCD CAMERAS

N. Waltham, Q. Morrissey, M. Clapp, S. Bell, L. Jones, M. Torbet

STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, United Kingdom nick.waltham@stfc.ac.uk

Contents

CCD camera readout electronics system architecture

- Requirements

CCD video signal processing and digitisation

CCD video processing ASIC

CCD DC bias

- 8-channel low-voltage DAC ASIC
- Radiation-hardening against single event latchup (SEL)
- 24-channel high-voltage CCD DC bias voltage generator and housekeeping telemetry system ASIC

CCD clock driving

– 6-channel clock driver ASIC

Conclusions and future plans

CCD camera readout electronics system

Control logic: Generate all timing signals

Typically implemented in a radiation-tolerant FPGA

Multiple-phase CCD clock drivers to clock the signal charge to charge detection amplifiers

Low-noise DC bias supplies to operate the CCD's output amplifier(s) and charge drains

One or more video preamplifiers, CDS signal processors and analogue-to-digital converters

Typical CCD clock waveforms

Clock drivers must translate logic-level signals to ~ 10 V amplitude analogue waveforms with sufficient current drive for the CCD's capacitive electrode

Output amplifier bias and video output

Charge detection amplifier

Charge detection amplifier requires several low-noise DC bias voltages

Output Drain (OD) Bias: ~ 30 V Reset Drain (RD) Bias: ~ 17 V

Video output waveform

Video output signal swing ~ 1 V Correlated Double Sampling (CDS) Signal output = Signal level – Reference level

Camera electronics design challenges

System requirements

- Low-volume, low-mass, low-power
- High-reliability and space-qualified components
- Sufficient tolerance to the effects of space radiation

Electronic component challenges

- Space-qualified components acceptable to international space agencies (ESA/NASA) are frequently unavailable
- Up-screened commercial components may not meet project requirements

Our approach at the STFC Rutherford Appleton Laboratory

 Design and space-qualification of low- and high-voltage mixed-signal ASICs

Science & Technology

CCD video processing ASIC

7

Features

DC Restoration of the CCD video signal Fully differential-input preamplifier and CDS 1 V video signal input range Fully differential pipelined 16 bit ADC with digital error correction **Operation at up to at 2 Mpixels/s** 10 bit Programmable Offset (+/- 500 mV) 7 bit Programmable Gain (gain = x 1 to x 3) Input referred system noise: 3 adu rms TMR protection against single-event upsets Power dissipation ~ 400 mW AMS C35 0.35 µm CMOS process

CCD video processing ASIC

Integral non-linearity (INL)

Differential non-linearity (DNL)

Performance

Video signal input range	= 1 V
video signal input range	- I V
Digitisation	= 16 bits
Operation	≤ 2 Mpixels/s
Input referred noise	= 3 adu rms
	= 46 μV rms
e2v CCD203 (4.5 μV/ e ⁻)	= 10.2 e ⁻ rms
Integral non-linearity	~ ±10 LSBs
Differential non-linearity	~ ±0.3 LSBs
Power dissipation	~ 400 mW

Radiation test results

Total ionising dose (TID) ≥ 50 krad(Si)

SEL LET threshold

~ 14 MeVcm²mg⁻¹

SEL linear energy transfer profile (LET) examined to 34 MeVcm²mg⁻¹ at Cyclotron Facility of Louvain-la-Neuve in Belgium using Ne⁴⁺, Ar⁸⁺ and Kr¹⁷⁺ ions

Solar Dynamic Observatory

NASA's Flagship Solar Mission Launched 11 Feb 2010 Atmospheric Imaging Assembly (AIA) Helioseismic and Magnetic Imager (HMI) Custom-designed e2v CCD203 4k × 4k pixels and 12 µm pixel pitch 4-port readout at 2 Mpixels/s each

SEL LET threshold ~ 14 MeVcm²mg⁻¹ Video ASICs individually protected with current-sense / current-trip circuitry

Progress along a Technology Roadmap

- Have demonstrated Low-voltage CCD ASIC technology
- But susceptibility to Single-Event Latchup remains

Where next?

- Radiation-hardening against SEL
- Greater functional integration
 - > High-voltage CCD ASICs

Low-voltage DAC ASIC

Flown on NASA's SDO

DAC protected with current-sense and current-trip circuitry

Features

8-channel 10-bit voltage output DACs

Voltage output: 0-2.5 V

Supply: 3.3 V

AMS C35 0.35 μm CMOS process

SEL LET threshold ~ 20 MeVcm²mg⁻¹

Guard-Ring Technology

Latchup

- Latchup is the creation of a low impedance path between the power supply rails
- Latchup is caused by the triggering of parasitic bipolar structures within an IC, in the case of the Space environment, by an energetic particle
- Implanted guard-rings of low-impedance can prevent SEL

Mk 3 Low-voltage DAC Radiation test results

- > No SEL events
- > SEL LET threshold \geq 130 MeVcm²mg⁻¹

Effectively SEL immune

High-voltage ASICs

SDO bias card

120 mm x 120 mm PCB7 CCD bias voltages set by a DAC ASIC16-channel housekeeping telemetry

Something better??

Science & Technology Facilities Council

AMS H35 0.35 μ m CMOS process

Standard 3.3 V transistors and 50 V high-voltage diffused MOSFET (DMOS) transistors

3.3 V transistors used within the low-voltage interface logic, voltage references and DACs

50 V DMOS transistors to provide the CCD's high-voltage bias supplies directly

High-voltage CCD DC bias ASIC (STAR)

Features

24-channel 10-bit bias voltage outputs

0-32.736 V outputs in 32 mV steps

 ± 20 mA into loads of 10 μF

±25 mA current-limiting short-circuit protection

Housekeeping telemetry system

36-channel housekeeping telemetry system Multiplexer, variable gain amplifier, 12-bit ADC

General

TMR protection against single-event upsets Guard-ring SEL protected 3.3 V and 35 V supplies 144-pin CQFP

High-voltage CCD DC bias ASIC (STAR)

Performance - characterised -40°C to 125°C

DACs

Output noise	~	20-40 μV rms (10 μF loading
Gain accuracy	<	0.3%
Integral non-linearity	<	0.6 LSBs
Quiescent power (at 35 V)	~	28 mW per DAC
Telemetry system		
Integral non-linearity	<	1.3 LSBs
Differential non-linearity	<	0.5 LSBs
Sample noise	<	0.75 LSBs rms
System		
Power dissipation:	=	37 mW to 1.17 W (max)

16

High-voltage CCD DC bias ASIC (STAR)

STAR ASIC

24-channel 10-bit bias voltage outputs with telemetry 36-channel general purpose telemetry system

Compared to, or to replace:

SDO bias card

120 mm x 120 mm PCB

7-channel bias voltages set by low-voltage DAC ASIC

16-channel housekeeping and telemetry

CCD clock driver ASIC (C2BA)

CCD clock driver waveform definition

CCD clock driver ASIC (C2BA)

Features

6-channel CCD clock drivers 0-16.368 V outputs in 16 mV steps (each) 0.4-400 mA output drive current (each) 2 pF - 200 nF loads 20 ns - 20 μs Tr / Tf 20-80% linear rise/fall < ±10% interphase coupling effects

General

TMR protection against single-event upsets Guard-ring SEL protected 3.3 V and 18 V supplies 132-pin CQFP

3-phase serial register clocks

120 pF to substrate (0 V)140 pF interphase coupling capacitance10 V clock amplitude

1 MHz clocking frequency

50% clock phase overlap

Small interphase coupling seen on the clock-lows

60% clock phase overlap

4-phase parallel register clocks

- 10 V clock amplitude
- **12.5 kHz clocking frequency (80 μs line-transfer time)**
- 100% clock phase overlap

Interphase coupling seen on the clock-lows and clock-highs

Conclusions and future plans

New challenges in CCD sensors and focal planes

Conclusions and future plans

Space-borne CCD camera design

- Programme of low- and high-voltage mixed-signal ASIC development
- Radiation-tolerant FPGA(s) for logic-level camera control

Current packaging / qualification of the ASIC die

- Individual die packaged in standard CQFPs

Future packaging / qualification options?

- Multi-die hybrid packaging technologies (multi-chip modules)
- Greater compactness
- Anticipated savings in overall packaging and qualification costs
- Possibly overly-custom and application-specific?
- Concern of impractically high power density?

Increasing sophistication of space-borne CCD camera systems

- Large focal plane arrays of tiled CCDs with multiple video output ports
- Benefits of highly-integrated ASIC functionality and high-density packaging become increasingly attractive and necessary

Thank you for your attention

