

Simulation study for Ku-band microwave radiometry of the polar atmosphere

Dr David Newnham (dawn@bas.ac.uk)

CEOI Emerging Technologies Challenge Workshop, 4th May 2017

NERC Technologies Proof-of-Concept grant NE/P003478/1

British Antarctic Survey WWW.bas.ac.uk

BAS – Space Weather & Atmosphere

BAS – Space Weather & Atmosphere

Science & Innovation

Science priorities

- Space radiation environment.
- Atmospheric heating.
- Space-atmosphere coupling.
- Solar effects on climate.
- Technologies / expertise
 - Instruments: Ground-based radars, radiometers, VLF receivers, & magnetometers.
 - Computer models: BAS radiation-belt model, atmosphere models.
 - Data: Exploiting ground and space-based observations.

Space weather and the polar atmosphere

Hydroxyl (OH) at 70–78 km

High 100-300 keV electron flux

Low 100-300 keV electron flux

Mesospheric ozone (O₃)

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Space weather and the polar atmosphere

- The polar middle atmosphere responds strongly to solar variability and space weather.
- ~1250 magnetospheric substorms / year ⇒ high energetic electron flux.
- New O₃ and OH measurements are needed to verify model predictions.

Atmospheric model – Sub-storms in December 2007

POLAR SCIENCE FOR PLANET EARTH

British Antarctic Survey

Ku-band atmospheric microwave radiometry Ku-band microwave region

120

80

du 60

20

3rightness 50 70

) 100

From satellite TV to remote sensing

- Continuous atmospheric O₃ and OH profiling from the ground using satellite TV receiver technology.
- Ground-based, passive technique.
- Radiometers can be assembled from low-cost, COTS components.

POLAR SCIEN(

FOR PLANET EARTH

Optimal estimation retrieval

• Measured calibrated spectrum,

 $y = F(\boldsymbol{x}, \boldsymbol{b}) + \boldsymbol{\epsilon} \quad \begin{cases} F - \text{Forward model} \\ x - \text{State vectors} \\ b - \text{additional parameters}; \\ \varepsilon - \text{Measurement noise} \end{cases}$

• Linearised forward model,

$$y = F(\hat{x}_i, b) + K(x - \hat{x}_i) + \epsilon$$

• Jacobian matrix, $K = \frac{\partial F}{dx}\Big|_{\hat{x}_i, b}$
 $\hat{x}_i - \frac{\text{Retrieval solution}}{\text{after } i \text{ th iteration}}$

Frequency (GHz)	Target species	Retrieved interfering* and background species	Bandwidth (MHz)	<i>∆T</i> (mK)
11.072	O ₃	H_2O continuum [*] , OH, N ₂ , O ₂ , CO ₂ , HNO ₃ , H_2O_2 , HO ₂	12, 320	1–5
13.434, 13.441	OH	H_2O continuum [*] , O_3 , N_2 , O_2 , CO_2 , HNO_3 , H_2O_2 , HO_2	1, 12	1–10

Ku-band atmospheric microwave radiometry Simulation results - Ozone

Ku-band atmospheric microwave radiometry Simulation results – Hydroxyl (OH)

British

Antarctic Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Ku-band atmospheric microwave radiometry Conclusions

- Simulation techniques have been developed for modelling the retrieval of ozone and OH vertical profiles from 11–14 GHz microwave observations.
- Ku-band observations are highly applicable to future microwave instruments designed to study space weather events, atmospheric dynamics, planetary scale circulation, and chemical transport for polar and global climate modelling.
- Ground-based passive microwave remote sensing complements space-based EO.
 - $-O_3$, NO_x (NO + NO₂), HO_x (OH + HO₂), NO_y species, tracers, temperature, humidity, zonal and meridional winds, vertical transport.

AR SCIEN

FOR PLANET EAR

Antarctic Survey