

Innovative materials for EO missions & beyond

CEOI Emerging Technologies Challenge Workshop

Alex Brinkmeyer 3 - 4th May 2017

Oxford Space Systems | UK Space Cluster | Harwell OX11 0QR | United Kingdom

www.oxfordspacesystems.com explore@oxfordspacesystems.com

- Founded in 2013
- An **award-winning** VC-backed space technology business **pioneering** the development of a new generation of **deployable space structures**
- Using origami & proprietary materials, we design and manufacture deployable structures are **lighter**, **less complex**, and **lower cost** than those in current commercial demand.

Best UK Start Up 2015 Grand Prix Winner 2015

Best Investment In A High Growth Manufacturing Business 2015

By using flight-qualified proprietary materials OSS products are:

- ✓ Lighter
- Less complex

- Lower cost
- ✓ More stowage efficient

...than those in current commercial demand.

First AstroTube[™] boom deployed on orbit in November 2016 onboard Alsat Nano spacecraft

Two industry records set:

- ✓ World's longest retractable CubeSat boom
 - From new material concept to flight in under 30 months

- ESA identified strategic requirement for LDAs for data communications & earth observation
- Antenna market largely dominated by US providers
- "Europe is critically dependent upon US for LDAs" (ESA)
- Traditionally LDAs have metal mesh reflectors with complicated support structure and bracing
- Use of novel preformed fibre-based flexible surface would allow for significant reduction in complexity and cost

Conventional reflector surface material (metal mesh)

Novel fibre-based flexible surface

Antenna products under development

Microsat RF Patch Arrays

- Steerable (2 DOF)
- Scalable & modular
- 6U and up
- S, Ka and Ku patches

Wrapped-rib Antennas

- Scalable
- 6U and up
- Up to Ka-band
- Cassegrain option

Large Unfurlable Antennas (TRL3)

- Scalable 4m 12m
- Up to Ka-band
- Novel low complexity outer ring
- Unique membrane surface

Antennas under development

Log periodic antenna

- Backbone structure manufactured using 4 deployable tape springs
- 6 m total length breadboard to correlate mechanical performance
- 6 m kinematic evaluation breadboard completed under contract for Asian customer

- OSS has secured a CEOI grant to develop a large flexible carbon fibre-based Cassegrain deployable antenna
- CEOI funding enabled a quicker pace of execution than ESA funding streams
- This development directly addresses the global need for highly costcompetitive antennas for microsat constellation opportunities
- Project aims to develop a TRL3 demonstrator and to validate materials, coatings & surface treatments to endure the LEO space environment

1 m diameter Cassegrain breadboard

Flexible ribs

Secondary reflector stowage area (secondary reflector not shown) Primary reflector surface (kinematically representative surface material) Partially deployed (demonstrates surface membrane stowage configuration)

- Characterisation of several material candidates
- Exploration of surface treatments and coatings to improve resistance to space environment
- Space environment aspects considered:
 - > High energy particle (proton and electron) radiation (most significant in GEO applications)
 - Vacuum ultra-violet (VUV) radiation (significant for LEO applications)
 - > Atomic oxygen (ATOX) erosion (significant for LEO applications)
 - > Temperature extremes

Materials and coatings investigation

- Under CEOI project OSS is investigating new coatings able to improve
 - > Thermal protection
 - > High thermo-optical properties
 - > Is able to sustain large deformations

Reduced CEOI breadboard assembly

Commercial in confidence

Conclusions

- CEOI grant crucial to OSS strategic technology development of deployable antenna technology
- Project aims to build a novel Cassegrain deployable antenna, to address global market need for higher frequency (up to Ka-band) antennas for microsat constellation opportunities
- OSS sees deployable structures as an enabler of EO technology with the aim to drive down cost and increase accessibility to space

OXF SP SV

100

The second second

Come and find us!

Shefali Sharma Business Development

-				
1	70	V		
-			Y	
k				~

Alex Brinkmeyer Technical Lead

@OxfordSpace
www.oxfordspacesystems.com
explore@oxfordspacesystems.com