

CEOI 2nd May 2019

Presented by Massimiliano Pastena Prepared by EOP- Φ MT Technology Coordination & Frequency Management Section

ESA UNCLASSIFIED - For Official Use

= 1 ≥ # = # 1 = # = 0 1 = = # = 0 1 = # # ₩ №

Table of Content for "Status Update on EO"

- 1. How ESA EOP see Technology development
- 2. EO missions overview
- 3. EO Technology Programmes :
 - a) EOEP technology development scope
 - b) Instrument predevelopment
 - c) Technology developments in System Studies
 - d) EO TDE and GSTP
- 4. Other Technology Innovations
 - a) HAPS
 - b) Smal Satellite Challenge
 - c) S3 challenge
 - d) Incubed
- 5. CMIN 19+

ESA UNCLASSIFIED - For Official Use

ESA | 16/01/2019| Slide 2

EO Technology : **Enabler** of a User Driven approach Science & Services (land, ocean, ice, atmosphere, ...)

Higher performance / cost ratio

- New Measurements (enabler)
- Higher spatial, temporal, radiometric resolution
- Instruments in the whole spectrum (RF, Optical) active & passive
- Higher **lifetime** (7 yrs \rightarrow 10 yrs or more)
- Increased **flexibility** (advanced manufacturing, re-programmable FPGA onboard, COTS)
- **Faster** to design/develop and deploy
- Long-term data **continuity** \rightarrow BIG DATA + AI
- **Platform** : specific EO needs (AOCS, storage, comms speed, more autonomy) + Standardisation
- Lower recurring **cost** (**spin-in** techno: e.g. COTS , multi-source providers)
- Miniaturisation and constellations (incl. convoys and formations)
 - More **autonomous** platform & operations
 - Distributed Ground Segment
 - Synchronisation (with ISL beacon and/or with GNSS)
 - Launcher techno for efficient access to space
 - lower cost, fast-to-market ability, adaptability and flexibility.

Mainly, but NOT LIMITED to LEO: also HEO & GSO (e.g. G-Class EE-10).

ESA UNCLASSIFIED - For Official Use

ESA | 16/01/2019| Slide 3

ESA Technology Programmes

EOP Technology under 3 programmes:

- **TDE** (former TRP): up to TRL 3-4
- **GSTP** : higher TRLs
- EOEP : all TRLs

EOEP : EO Envelope Programme

ESA UNCLASSIFIED - For Official Use

TRL 9 Actual system "flight proven" through successful mission operations												
TRL 8 Actual system completed and accepted for flight ("flight qualified")						for						
TRL 7 Model demonstrating the element performance for the operational environment					p	rojec	t S					
TRL 6 Model demonstrating the critical functions of the element in a relevant environment												
TRL 5 Component and/or breadboard critical function verification in a relevant environment												
TRL 4 Component and/or breadboard functional verification in laboratory environment												
TRL 3 Analytical and experimental critical function and/or characteristic proof-of-concept					С	for ncep	ts					
TRL 2 Technology concept and/or application formulated						Ph. 0 \/B1						
TRL 1 Basic principle observed and reported												
	TDE	СТР	GSTP	CC	ARTES ScyLig!	EOEP	iSpacE	ExPeRT	ETP	EGEP	NAVISP	FLPP

+

= !! 🛌 :: = + !! = 🔚 = 🔚 = !! !! = = 🔡 🖬 = 🚺 !! = :: !! 🕊 🚟

Large scope for EOEP technologies

- RF & Optical
- from concept to Components & full HW demonstrators
- for satellites (and airborne campaigns)

= •• 🛌 •= +• •• • • = 🔚 = 10 • •• = = 10 •• = 10 •• = 10 •• = 10 •• ••

EE-10 candidate missions (21 concepts)

instrument technology driven by frequency / wavelength

= II 🛌 == + II = 🔚 🚍 = II II = = = 🔚 🛶 🚺 II = = = II 💥 🙌

esa

Instrument Pre-Development

- and Complete Sub-Systems / Optical Models

Pressurised laser source

(by EADS, D)

➔ baseline for MERLIN mission

(by LEONARDO, I)

ESA UNCLASSIFIED - For Utticial Use

· = ■ ▶ = = + ■ + ■ ≡ = 1 ■ ■ = = ■ ■ ■ ■ ■ = = ** +

+

Ocean Surface Currents Airborne Radar OSCAR Demonstrator

wind retrieval

Airborne Ku-band (13.5 GHz) radar instrument for ocean surface motion and

Fore-Scat

Surface current retrieval using along track interferometry

ZD-Scat

Aft-Scat

Surface wind retrieval using scatterometer measurements

ESA | 16/01/2019| Slide 9

European Space Agency

OSCAR installed in a Pod under a Piper PA-31

ESA UNCLASSIFIED - For Official Use

Coastal Radiometers - under Instrument pre-Development

Provide **European sourced solution** for high resolution radiometer, including:

- high reliability and <u>full sensor chain characterisation</u> for best data products
- <u>high frequency channels</u> to improve coastal & global performance.

Frontal system SW France, Iberian peninsula AROME analysis at 0.01°,

S6 using non-European radiometers:

- black box for European users
- Single Point Failure issues

ESA | 16/01/2019| Slide 10

= 88 km = + 88 = ½ = 2 81 88 = = 12 H = 18 = 18 km = 18 H = 18 H

Technology developments in System Studies

On-going System Studies for Earth Explorers & CSC Evolution HPCM :

- Two parallel system studies per Candidate Mission
- Technology pre-development part : (33% to 43% allocation)

		Amount / study	Technology part		
	Phase	M€	M€	%	TRL target
EE-9	А	3.5	1.5	43%	4
(Skim, Forum)	B1	4.5	1.5	33%	5/6
EE-10	0	1	0.4	40%	
(Stereoid, G:Class, Daedalus)	Α	3.5	1.5	43%	3/4
CO2M, PICE, CMIR, ROSE-L	A/B1	5	1.8	36%	3-4 / 6
LSTM, CHIME	A/B1	6	2	33%	3-4 / 6

Details at QSR : ESA/PB-EO/DOSTAG(2019)1

Block-1 is fundamental , also for low TRLs

- It enabled the above studies (e.g. CO2M benefits from EE-8 predevelopments)-
- Needed to mature new ones : e.g. EE-11 (Fast Track) will need TRL-4 technology

SWIR grating for CarbonSat

ESA UNCLASSIFIED - For Official Use

European Space Agency

ESA | 16/01/2019| Slide 11

2.c) Copernicus Space Component (CSC) in Block-1 Phases A/B1 System Studies of Potential Expansion Sentinels

Six Phase A/B1 missions initiated in 2018

(HPCM : High Priority Candidate Missions)

- Antropogenic CO2 Monitoring
- High Spatio-Temporal Res. Land Surface Temperature Monitoring
- Polar Ice and Snow Topographic (PICE)
- HyperSpectral Imaging (CHIME)

ESA UNCLASSIFIED - For Official Use

- Passive Microwave Imaging (CMIR)
- L-band SAR

HPCM	System study	Technology	Total	
CO2	3.2	1.8	5	M€
lstm	4	2	6	M€
P-ICE	3.2	1.8	5	M€
CHIME	4	2	6	M€
CMIR	3.2	1.8	5	M€
L-band SAR	3.2	1.8	5	M€
TOTAL	20.8	11.2	32	M€
x2 (parallel				
studies)	41.6	22.4	64	M€
-	65%	35%	100%	-

For each mission, parallel studies and with two technical contributions (under EOEP):

- → Block-1 funds (~65%): Mission studies
- → Block-2 funds (~35%): Technology Part (related to pre-development of Critical Elem. to reach TRL 3-6)

Ref. ESTEC/AC/496-11 & ESTEC/AC/497-17 ROSE-L

ESA | 16/01/2019| Slide 12

_ II ⊾ II = + II = '≦ _ II II _ Z = H = Ø II _ II _ H * IV

2c) Additional Technology Activities for Copernicus CSC Evolution missions

In addition to the technologies in the Phase A/B1 studies, there are more more pre-development activities on-going:

- SWIR detector for the Anthropogenic CO2 Monitoring Mission
- TIR cooled detector for the High Spatio-Temporal Resolution Land Surface Temperature (LST) Monit. Mission
- Detector for HyperSpectral Imaging Mission
- Common Platform technology developments (see example in two slides)
- Large Reflector Antenna for low frequency SAR and imaging microwave radiometer
- CO2 spectrometer elegant breadboard
- CO2 clouds and aerosol instrument elegant breadboard

ESA UNCLASSIFIED - For Official Use

ESA | 16/01/2019| Slide 13

The set = + 11 = ≦ = 11 11 = = 2 He with the set # 10 He = 10

Standard Platform \rightarrow more resources for the Paylaod

Platform Needs:

Architecture changes

- Miniaturisation & more Integration (units \rightarrow boards \rightarrow components)
- Digital Interfaces : shifting intelligence & less cables

Standardisation: ٠

- Common interfaces (electrical & mechanical form-factor)
- \circ Interchangeable Modules \rightarrow multi-suppliers
- Increased **functionality / reliability**: e.g. CFDP (file transfer), ...

EOEP-5 funding System studies \rightarrow Roadmap for standardisation:

- 3 x 2 M€ studies: EO Standard Platform for Copernicus (EOP-P)
- 2 x 400 k€ studies : Data Handling Roadmap (EOP-ΦM)

but

GSTP/Incubed should (co-)fund future Module Developments

(e.g. GNSS Rx board in O/B Computer)

Multi-board SMU:

ESA UNCLASSIFIED - For Official Use

+

I SI-2

Standardisation done for Cubesats -> big success

Examples of developments (from EOP/TDE to GSTP)

= II 🛌 == + II = 🚝 = II II = = = 🔚 🛶 🚺 II = = I 💥 🙌

Selected activities for TDE 2019-2020

All details at ecpb: ESA/IPC(2018)103

	Activities	Budget
Competence Dom. (CD)	Nb	k€
01-Components	2	1700
02-Structure	3	1350
03-Avionics	2	500
04-Power	1	350
05-RF	9	3600
05-Optical	5	2500
06-Life, Robotics		
07-Propulsion	1	400
08-GS-OPS	2	750
09-IT-Data	3	850
10-Environment	0	0
Grand Total	28	12000

Relevant to EE-10

Compet. Domain	TDE. Ref.	Title		EE-10	2019 / 2020
5- RF	T107-602EF	Geometry- and wavelength-agnostic highly-efficient forward and reverse SAB processor	450	STEREOID, + G-CLASS	2019
5- RF	T107-607EF	Antenna Verification Methodologies for Large Antennas	400	G-CLASS	2019
2 - Struct	T120-601MS	In-Orbit Surface Metrology for Large Deployable Reflectors	450	G-CLASS	2019
7 - Propul	T119-601MP	Ram-EP VLEO satellite mission design and integrated ram- EP ground testing	400	Daedalus	2020
5- RF	T106-604EF	Development of 4.7 THz Schottky device	500	LOCUS	2019
2 - Struct	T121-601MT	Low Noise Miniaturized very high frequency Pulse Tube cooler	600	LOCUS	2019
5- RF	T106-605EF	A low-frequency and wide-band reflector antenna feed for future earth observation radiometers	350	CryoRad	2019
3 - Avioni	T101-601ED	Future On-Board Processing and Information Extraction Algorithms Study	250	Nitrosat	2019
5- OPTICAL	T116-601MM	Low straylight diffraction grating	600	Nitrosat	2020
		TOTAL	4,000	9	

Notes:

- TDE Call closed on 14-Sept., and EE-10 was announced on 21-Sept. (not all details from Proposals could be shared in enough detail)

- SEASTAR (former Wavemill) already had many pre-developments

- Daedalus requirements: need clarification from a Technology view ESA | 16/01/2019| Slide 16

: | | | | = = = := := 0 | | | = := := := ::: !*!

GSTP-6 (Elem. 1 & 2) activities

GSTP-1 Elem. 1- Develop

ESA/IPC(2018)105 - May 2018

- EO part (with G611 ID) often co-funded with Block-1 :
 - upstream (components & modules)
 - downstream (with ESRIN)

http://emits.sso.esa.int/emits-doc/ESTEC/News/GSTPE1-DevelopCompendium2017.pdf

CCTD 1 Common diama					
GSTP-1 Compendiu			in GSTP	PElem.1 WP	
		Jun-1	17	(Ja	n.2019)
		Nb. Activ.	M€	Nb. Activ.	%
	Total	143	144	32	22%
	EO only	14	11.6	2	14%

➔ Potential for transferring many more to GSTP Elem. 1 WorkPlan

GSTP- Elem. 2 - MAKE

ESA/IPC(2018)110 - Sep 18

- 10 activities / 11.6 M€ in EO (i.e. 17% of 70 M€ total)
- not necessarily aligned with ESA EOP (partly driven by National interests) → Consider InCubed in the future
- Product oriented with co-funding scheme (typically 50% by company)

ESA UNCLASSIFIED - For Official Use

_ II ⊾ II = + II = ≝ _ II II = Ξ **.** II II **.** ...

ESA | 16/01/2019| Slide 17

Other Technology Innovations High Altitude Platforms (HAPS) –

Workshop on 9-10 Oct. 2017

Two system studies initiated in 2018,

- HAPS in support of ESA EO missions
- Identification of HAPS in support of satellite air quality activities

No Technology development planned at present

Workshop on 12-14 Feb. 2019 in Leiden (NL)

https://atpi.eventsair.com/QuickEventWebsitePortal/haps4esa/website

ESA UNCLASSIFIED - For Official Use

ESA | 16/01/2019| Slide 18

_ II ⊾ II = + II = ≝ _ II II _ Z = H = Ø II _ II = II ₩ IV

Conclusion

٠

ESA UNCLASSIFIED - For Official Use

EARTH OBSERVATION: USER DRIVEN with wide range of innovation

• Technology is the ENABLER

EOP Technology NEEDS:

- Higher performance / cost ratio (also faster design & deployment)
- Driven by institutional, but opening to Constellations (Space 4.0)

Acknowledging trends:

- Spin-in : COTS + digitisation (FPGA re-programmable O/B) + smart manufacturing + Artif. Intelligence
- Miniaturisation opening new applications: for Institutional & Space 4.0
- <u>Standardisation</u> required (as for CubeSats)- to foster industrial collaboration

Space19+ and Future EO Block-1 are key

- to continue the EO success (many achievements, lessons learnt)
 - to foster/focus innovation (within the EO user driver approach)

