(Some) Current & imminent developments for microwave EO applications

Peter Hargrave - Cardiff University

2 Major development areas

Filterbank spectrometers

- Large potenrial impact on NWP capability & climatology
- CEOI HyMAS & HyMAS-X

Flat lenses

- Metamaterial optics reduced mass, improved performance & capabilities of optical systems
- CEOI MetaTel

Hyperspectral microwave sounding

- Current & planned MW sounders few channels with relatively high radiometric noise
- Hyperspectral MW sounder should have significant impact on NWP ability
 - Hypothetical instrument "HYMS"
 - Factor of 2 reduction in retrieval uncertainty c.w. MetOp-SG
 - Several hundred channels observing major lines & continuum simultaneously
- Climatology ice clouds in global climate system

CAMBRI

CAERDY

SPACE

CEOI-ST

@AGUPUBLICATIONS

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1002/2015300.

Key Points:

 A hyperspectral MW instrument could improve temperature & humidity retrieval compared to MetOp-SG
 The main impact from HYMS comes from higher resolution in the O₂ band around 60 GHz

 Hyperspectral information is not really sensitive to instrument noise Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: The clear-sky case

Filipe Aires^{1,2,3}, Catherine Prigent^{1,2}, Emiliano Orlandi⁴, Mathias Milz⁵, Patrick Eriksson⁶, Susanne Crewell⁴, Chung-Chi Lin⁷, and Ville Kangas⁷

¹Estellus, Paris, France, ²LERMA, Observatoire de Paris, Paris, France, ³Water Center, Columbia University, New York, New York, USA, ⁴Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany, ⁵Department of Computer Science, Electrical and Space Engineering, LTU, Lulea, Sweden, ⁶Global Environmental Measurements and Modeling, Chalmers University of Technology, Cothenburg, Sweden, ⁷Earth Observation Projects Department, ESA

F. Aires et al. DOI: 10.1002/2015JD023331

Information content analysis for a novel TES-based Hyperspectral Microwave Atmospheric Sounding Instrument

Prateek Kumar Dongre^{*a}, Stephan Havemann^b, Peter Hargrave^a, Angiola Orlando^a, Rashmikant Sudiwala^a, Stafford Withington^c, Chris Thomas^c, David Goldie^c

^a Cardiff University, School of Physics and Astronomy Queens Buildings, The Parade, Cardiff, CF24 3AA

Dongre et al. DOI: 10.1117/12.2500516

Technology development under CEOI programmes

- Novel on-chip filterbank spectrometers HyMAS
 - **Demonstration** of hyperspectral sampling in in range 50-190 GHz
 - Photon-noise-limited detection NEP ~few x 10⁻¹⁷ WHz^{-1/2}
 - Demonstrate channel resolution of up to 1000 (nu/Dnu)
 - NEDT of ~20mK per channel for example implementation high spatial resolution conical scan
 - Achieved by single spatial antenna coupled to filterbank, readout by superconducting Transition-Edge-Superconducting detectors.

Filterbank spectrometer

CARDIFF UNIVERSITY

PRIFYSGOL

CEOI-ST

Filterbank spectrometer chip

Miniaturisation...

Current state-of-the-art – MWS (MetOp-SG)

Miniaturisation...

Current state-of-the-art – MWS (MetOp-SG)

HyMAS filterbank

Performance predictions – HyMAS / AMSU-A / ATMS

HyMAS modelled with ATMS & AMSU-A channels, HyMAS noise (better than ~20mK per channel)

Performance predictions – HyMAS vs MWS

MWS – MetOp-SG (NEDT ~300-1800 mK)

HyMAS modelled with MWS channels, HyMAS noise (better than ~21mK per channel)

Metamaterial flat lenses and telescopes

Two approaches – GrIn and phase engineered

UNIVERSITY OF

CAMBRIDGE

CARDIFF

PRIFYSGOL

CEOI-ST

Met Office

SYSTEMS

Metamaterial flat lenses and telescopes

PRIFYSGOL

hargravepc@cardiff.ac.uk

esa

Metamaterial flat lenses and telescopes

Example:

"Traditional" lens is 40 mm thick through the centre, quite lossy, and weighs 3.5 kg. The metamaterial equivalent is flat, only 2mm thick, and weighs only 100 g, with excellent thermo-mechanical stability.

Metamaterial telescope:

- Lightweight
- Low loss
- Axial system excellent beam quality over large, telecentric focal plane

Predicted impacts

- Metamaterial optics
 - Ultralightweight, low-loss optical systems
 - Large focal planes non-scanning?
 - Compact quasi-optical networks
 - Novel instrument configurations
 - Commercial applications
 - Radar absorbers
 - Compact antennas
 - ...

- Filterbank spectrometers
 - Next gen. NWP and climatology mission – hundreds of photonnoise-limited channels
 - Single instrument could replace ALL
 3 MetOp MW instruments (MWS, MWI, ICI), with much better resolution & accuracy
 - Commercial
 - *Characterisation* of hidden threats for THz security scanners

Predicted impacts

hargravepc@cardiff.ac.uk

CARDIFF UNIVERSITY PRIPYSCOL CARDIPP