

Distributed edge and cloud processing for EO and implications for future missions and applications Owen Hawkins, Chetan Pradhan

CEOI Emerging Technologies Conference Abingdon, 02 May 2019

EARTH-i TIMELINE

EARTH-I BUSINESS MODEL

WHERE WE ARE

Customer needs	Analytical Capability	Satellite Data Sources	3 rd Party Data Sources	Delivery Capability	Resources	Route to Market	Vertical Expertise	Accessible Market
Infrastructure this	Mapping	Vivid-i	AIS	Web GIS	Grants	In country partner	Spirit guide	Quantifiable market
Power that	Indices	KompSat	News	Print	Internal funding	Partner company	Expert in partner	Probable contract
Water the other	Machine Learning	SuperView	ADS-B	API	Customer funding	Integration partner	Internal expert	Known tenders
Issue	Ortho	TripleSat	River gauge sensors	Mobile	Enthusiastic people	Direct to customer	Academics	Lead customer
Problem	GIS	Airbus	LIDAR	Bulk	ODA		Internet research	Forecast market
Desire		Sentinel	Drone data	3D web	Bootstrap		NGOs	
Need		Planet	Aerial data				Government partner	

The key for us is to reflect the needs of all of these tasks and users within our technical infrastructure

EDGE COMPUTING

INTERNAL DEVELOPMENT

Developing:

- Object detection
- Feature detection
- Semantic
 segmentation
- Change detection
- Image stacking etc.

CEOI OVERPASS

Developing:

- 3D Surface reconstruction
- GAN based superresolution
- Cloud detection
- Moving feature
 extraction
- Compression

AI SOLUTIONS FOR BUSINESS

Developments able to be deployed on resource limited platforms, e.g. on satellite Work is needed on the systems to administer these on-board capabilities

CLOUD COMPUTING INFRASTRUCTURE

Deployed secure cloud infrastructure relocatable to any AWS location (globally distributed). Deployable back and front end services, for example:

Server based and/or dockerised modular deployments of certain software for image processing

- PCI geomatica, ENVI, ArcGIS, Spacemetric Keystone
- OGC web streaming services (geoserver etc.)
- Rapid machine learning model deployment with AWS Sagemaker etc.

Statistical and mathematical calculations using python libraries with Dynamo DB

Many services could be duplicated to the edge where they are not resource or IO hungry, though compatibility is a factor.

CEOI Emerging Technologies Workshop

WHERE COULD WE GO?

AAA

A CHANGE IN TEMPO

- The first batch of **5 fully commercial satellites** scheduled to be launched 2020-21. Life 5+ yrs.
- Our intention is to launch batches of 5 satellites at 9 -15 month intervals thereafter, cadence dependant upon demand.
- The Vivid-i constellation will provide imaging opportunities throughout the day and night, with satellite rollout from 2020.
- Each acquisition opportunity offers the potential of video collection

TYPICAL EO SATELLITE USE CASE

Need	Request	Acquire	Downlink	Process	Deliver
An internal or external user requests a data capture	The request is delivered to the satellite	Await correct orbital position for acquisition	Await downlink opportunity and deliver data to ground via RF link	Perform pre- processing and analytics on data using on- ground AI	QC and deliver information
'Open shutter' on satellite detects fire damage through image recognition comparison with on-board land- cover map or through second	Automatic command to data storage to retain buffered data and create low-volume version	No wait	Highly- compressed data immediately transmitted to ground via MEO satellites	Data integrated into cloud computing - based fire damage map	QC and then fire damage map is updated live

02 May 2019

sensor

DISTRIBUTED RESOURCES IN FUTURE

On Satellite

Prepare images and videos for use

Check quality and content

Compress data for downlink

Make comparisons with expected imagery features

Derive basic information

Make decisions about acquisitions and downlink

Generate satellite commands in real time

On Cloud

Batch process large volumes of data, train neural networks

Structure workflows

Perform data fusion and data science tasks

Manage GIS infrastructure

Serve and deliver to customers

On Premise/Private

Prototype services for use on board or on cloud

Secure tasking and mission planning

Deploy workflows to cloud and satellite

SOME ENABLING TECHNOLOGIES

Myriad-X Low power deep neural network inference

NVIDIA Jetson TX-2 AI computing device, CPU, GPU, linux, multiple IOs

AWS Ground Station Fully managed ground station as a service

KONGSBERG

Flexible ground segment

Ongoing machine learning library development

Data on which to build satellite applications

Multi-sensor satellites for internal tipping/cueing

Advancement of inter-sat comms for data backhaul 'Always-on' sat comms at sufficiently high bandwidth

Fast satellite uplink for the transfer of models and software To reload ever larger algorithms and supporting libraries

More pre-trained models for satellite data analysis and/or labelled datasets Many are available for standard photos, very few available for satellite data

Geo-video enabled software platforms GIS packages that understand satellite video

Advancements in satellite autonomy

VIVID-I EVOLUTION

Proposed next generation mission to enhance the utility of video from space

- On-board processing to downlink derived information quickly
- Inter-satellite links / data relay for 24/7 satellite contact, commanding and video return
- Additional spectral data for enhanced information content; inclusion of other sensors in the constellation
- More sophisticated mission planning and data processing
- Improved imagery resolution and fidelity

Telephone (UK): +44 (0)333 433 0015 Email: info@earthi.co.uk Web: www.earthi.space Earth-i Ltd 10 Nugent Road, Surrey Research Park, Guildford, GU2 7AF, United Kingdom.