

Cloud Detection Using Deep Learning on GPUs for Landsat 8

Alistair Francis^{1,2}, Panagiotis Sidiropoulos^{1,2*,3}, Andrea Mirabile², Jan-Peter Muller¹

¹Mullard Space Science Laboratory, UCL ²Cortexica Vision Systems Ltd. ³Hummingbird Technologies Ltd. *previously at...

AI SOLUTIONS FOR BUSINESS

Outline

- Context
 - O Cloud masking
 Fully convolutional networks
 Landsat 8
- Design
- Performance
 - o Accuracy
 - \circ Speed
- Future Outlook
 - Large-scale processing of Landsat 8
 - $_{\odot}$ Extension to other datasets
 - \circ On-board processing

≜UCL

Cloud Masking

- Ubiquitous problem in EO community
- On average, two thirds of Earth is cloudy
- Opportunities for S/C operators:
 - On-board data reduction/real-time target acquire
 - Rich auxiliary dataset
- Opportunities for downstream users:
 - Automated candidate selection
 - Removal of non-surface pixels
- Direct applications:
 - Climate trends cloud levels per year
 - Correlations with other variables ecological or economic

Cloud Masking

- Since the 1980s, algorithms have been developed for masking clouds (Rossow et al., 1985)
- Most previous algorithms have been based on physical principles :

 Derive physical quantities from bands (e.g. TOA radiance/derived temperature)
 Thresholds applied to these physical values
 Mostly over single pixels (or averaging over small number)
- Machine Learning techniques have recently come to prominence:
 - Single pixel Neural networks / Random Forest / SVM (etc.)
 - o Some texture extractors (e.g. Gabor) or convolutional networks for spatial features
 - o Shown to have markedly higher performance than physically-derived thresholds

State-of-the-art

- Many papers published with bespoke datasets/instruments: comparability is elusive
- CFMask (Confidence Function of Mask) used for Landsat 8. Decision tree style thresholding algorithm incorporating scene-wide statistics
- ACCA (Automated Cloud Coverage Assessment) used for Landsat 7
- Foga et al., 2017 gave comparison of 9 algorithms on same Landsat 8 dataset

Fully Convolutional Networks

- Convolutional layers only.
- Results in arbitrary input size : output map just grows with input
- Fully convolutional encoder-decoder ideal for segmentation tasks

CloudFCN: Design

- Original R&D as part of OVERPaSS project with Earth-i
 - Cloud detection in RGB satellite: Carbonite-2
- CloudFCN: redesigned for general purpose cloud detection for any EO imaging sensor
- Fully convolutional model architecture
 - Residual connections, inspired by U-net
 - Dimensionality reduction for increased speed, inspired by InceptionNet
 - o Fuses pixel-level information with successively larger spatial features
 - o Each output informed by individual pixel and areas around it

Stride **Filter Size Receptive Field** Layer Jump "PIXEL" Inception 1 5 2 5 5 Convolution "TEXTURAL" 3 7 2 9 Convolution 5 21 6 Inception Convolution 2 5 6 45 "Spatial" 5 12 69 Inception Convolution 2 5 12 117 "CONTEXTUAL" 2 5 24 165 Transpose 12 261 Convolution 1 2 5 12 261 Transpose "SPATIAL" 3 7 309 Transpose 6 345 5 Inception 2 "TEXTURAL" 2 5 2 353 Transpose 5 361 Inception 1 1 "PIXEL" Convolution 365 365 Output

- Successive convolutions (LHS of diagram) produce higher-level features
- Deconvolutions (RHS of diagram) map features back to outputs
- Residual connections bypass deeper convolutions
- Concatenation followed by dimensionality reduction fuses information efficiently
- Receptive field gives idea of FOV of each feature layer

Dataset

- 96 tiles, each around 7000-by-7000 pixels
- 12 tiles for each of 8 terrains: Barren, Forest, Grass-Crops, Shrubland, Snow-Ice, Urban, Water, Wetlands
- Cloud masks hand-drawn by USGS
- Data taken from Foga et al., 2017

Courtesy of Foga, 2017

0

Performance Assessment

- Performance measured with 4 metrics:
- 1. %Correct = totalCorrect / total
- 2. %Omission = missedCloud / totalCloud
- **3.** %Commission = falseCloud / totalNotCloud
- 4. %Quality = %Correct %Omission %Commission
- Quality provides balance between overall accuracy, missed detections and false detections

Performance Assessment

		Barren	Forest	Grass-Crops	Shrubland	Snow-Ice	Urban	Water	Wetlands	Average
CloudFCN (RGB)	%Correct	78.92	82.69	94.69	93.41	49.65	93.41	92.34	77.36	82.81
	%Omission	12.24	23.20	4.08	8.82	7.25	2.88	6.34	24.32	11.14
	%Commission	29.89	11.00	7.36	4.47	76.96	8.64	8.18	19.90	20.80
	%Quality	36.79	48.48	83.25	80.11	-34.56	81.89	77.82	33.14	50.87
CloudFCN (Multispectral)	%Correct	92.95	95.12	96.12	88.68	72.93	95.56	95.43	91.24	91.00
	%Omission	4.70	7.21	6.27	19.66	17.60	2.21	4.62	13.16	9.43
	%Commission	8.95	1.92	1.79	3.23	27.53	5.75	4.50	3.89	7.19
	%Quality	79.30	85.99	88.06	65.79	27.80	87.61	86.31	74.19	74.38
ACCA	%Quality	63.02	68.69	62	60.47	36.25	68.33	71.43	62.48	61.56
AT-ACCA	%Quality	66.67	73.83	74.09	70.65	35.86	74.06	70.51	76.25	67.72
cfmask	%Quality	77.1	67.27	85.74	75.53	26.37	74.72	50.98	65.97	65.69
cfmask_conf	%Quality	66.78	66.72	83.59	72.3	20.75	76.54	51.11	67.45	63.63
cfmask_nt_cirrus	%Quality	54.23	57.2	70.71	71.58	-15.87	74.37	50.23	47.16	51.62
cfmask_nt_cirrus_conf	%Quality	54.44	38.79	60.01	66.38	-43.68	73.2	49.04	35.14	41.66
cfmask_t_cirrus	%Quality	69.82	64.78	77.98	72.75	-24.1	72.42	57.21	53.27	49.01
cfmask_t_cirrus_conf	%Quality	69.37	43.99	77.76	72.34	-52.76	74.72	57.24	52.14	49.63
See5	%Quality	54.19	51.88	42.15	42.46	35.48	57.4	39.35	68.17	49.17

L

Detected Cloud	Missed Cloud
False Cloud	Clear

Î U C L

Performance

CPU: i7-8750H (2.2 GHz, 12 cores) – 0.1 MPix/sec

GPU: GTX-1060 (6GB) - 1 MPix/sec

- High speed on consumer-grade GPU cards (£170)
- CPU performance unaffected by batch size
 - Calculated in series no time save
- Down-sampling provides O(n²) speed-up

Outlook

- Processing of large amounts of Landsat 8 data
 - Provide community with alternative to fmask-derived quality assurance product
 - Further quantify performance on larger dataset
 - Single GPU @ 1MPix/sec = 4x data-rate of Landsat 8
- Other EO missions:
 - Sentinel 2/3 actively being worked on
 - Hyperspectral missions (e.g. Hyperscout-2, MODIS) being investigated
 - RGB satellites

Outlook

- On-board processing
 - OpenVINO, Movidius NCS, etc. provide platforms with ML capabilities
 - Data reduction
 - Dynamic data compression
 - Smart operational decision-making
- Wider applications
 - Generally applicable to segmentation problems
 - Land-use classification
 - Flood detection
 - Smoke/fire detection
 - And many others...

Predicted Impacts

- Affected missions
 - Short-term: All multispectral EO satellites
 - Long-term: With improved performance, panchromatic or otherwise limited spectral combinations
- New-mission concepts
 - Cloud mapping instruments without LIDAR/RADAR
 - Dynamically operated constellations: Prioritisation of repeat observations
- New science
 - Higher accuracy in existing science: fewer spurious datapoints
 - Big Data approaches to cloud cover trends for climate modelling
 - Other segmentation problems in EO: Sea ice detection, Land-use, etc.
- Commercialisation
 - Algorithms not directly protectable: these techniques are becoming standard in ML-sphere
 - Embedded systems
 - Pre-validated models and mission-phase training

Questions

Extra Slide

- Google TPU
- Suboptimal performance

 Low memory allowance is likely culprit