

Photonics Integration Technologies for Small EO Platforms Damien Weidmann

Scope & Outline

- Scope
 - Photonics technologies
 - Spectrometers for atmospheric composition sounding
 - System miniaturization for small payloads
- Outline
 - Drivers
 - Three miniaturization photonic technologies
 - Integrated LHR
 - MEMS FTS
 - Mid IR waveguide structures
 - Conclusion

Drivers

- Atmospheric composition sounding
 - GHG/Climate and Pollutants/Air quality
- Small is enabling!
 - Reduced costs and increased agility and sounding configurations
 - NanoSats / microSats
 - High altitude / long endurance platforms
 - Closer to the ground: UAV and robots
- Network of coordinated sensors vs a large high specs one
 - Cost benefits Resilience Economy of scale
 - Multi scale sensing, combining ground air space sensing
- Platform Hosting (Coms)

Need for High Spectral Resolution Sounding

Science & Technology Facilities Council Rutherford Appleton Laboratory

CEOI Tech Workshop - Abingdon - 01/05/2019

RAL Space

Spectroscopy

Limb Sounding

Solar Occultation Limb Sounding

Miniature LHR for CO₂ and H₂O Sounding

From Hoffmann et al., Atmos. Meas. Tech., 9, 5975–5996, 2016 doi: <u>10.5194/amt-9-5975-2016</u>

Science & Technology Facilities Council Rutherford Appleton Laboratory

CEOI Tech Workshop - Abingdon - 01/05/2019

7

RAL Space

Spectroscopy

Ground-based demonstration

Demonstration in ground-based solar occultation @ 955 cm⁻¹ (10.47 mm) 0.02 cm⁻¹ resolution (Resolving power of 50,000)

8

Payload for MicroSat Missions

Further Missions Proposed

Small sat based meteorology missions

- IASI taken as benchmark
- H₂O and T sounding
- Best configuration identified
 - Geostationary / point and stare LEO
 - Stratosphere/mesosphere T sounding
 - Gap filling in upper atmosphere NWP infrastructure
- Evaluation of laser heterodyne radiometry for numerical weather prediction applications, F. Smith et al., QJR Meteorol Soc., 1–20, 2018, doi: <u>10.1002/qj.3365</u>

- Constellation of 12 configurable satellites for middle atmosphere studies
- Addressed scientific questions
 - Quantify H2O in UTS and understand climate feedbacks
 - Quantify and understand gaseous and particulate composition in UTS, response to emission and exchanges
 - Provide accurate representation of vertical distribution of GHG and O3 precursors
 - Evolution of O3 stratospheric layer
 - Impact of UV and charged particules in the US and links to climate.

Miniaturized MEMS FTS

Segmented comb electrodes

Off the shelf device

Rutherford Appleton Laboratory

Science & Technology Facilities Council

Credit: Hamamatsu

Input optical fiber

alignment guide

Output optical fiber

alignment guide

Evaluation for EO applications

- Spectrometer performances
 - Resolving power 200 @ 1580 nm
 - Operating range 1150-2050 µm
 - 5 ms scan
 - Peak response efficiency 0.08
 - SNR 0.01X theoretical expectation for ideal FTS
- Environmental tests
 - MEMS structure survived vibration testing
 - Cubesat launch scenario

Science & Technology Facilities Council Rutherford Appleton Laboratory

Static Planar Waveguide FTS

transform spectrometer for methane detection", 25, 26, 2017, 33018 DOI: 10.1364/OE.25.033018

3D Waveguide Structures for 1-11 µm

Ultra fast laser source 360 fs – 1030 nm – 500KHz rep rate 13 nJ pulse energy Focused to ~1 µm x 3 µm

Chalcogenide glass Ge₃₃As₁₂Se₅₅ (IG2)

Science & Technology Facilities Council Rutherford Appleton Laboratory

CEOI Tech Workshop - Abingdon - 01/05/2019

Collaboration with ATC and HW

science & Technology Facilities Council UK Astronomy Technology Centre

Building block 1 : Single Mode Waveguide

Photograph of a series of waveguides

Spatial profiles measured and modelled

RAL Space

Spectroscopy

Propagation loss 1 – 1.5 dB/cm

Demonstration and characterization of ultrafast laser-inscribed midinfrared waveguides in chalcogenide glass IG2, H. L. Butcher, Optics Express, 8, 26, 10930, 2018, doi: <u>10.1364/OE.26.010930</u>

Building block 2 : Bend & Couplers

directional couplers in GeAsSe chalcogenide glass H.L. Butcher, OSA Continuum, 1, 1, 221, 2018, doi: 10.1364/OSAC.1.000221

39.6 µm

Building Block 3 : Volume Grating

Optics Express, 8, 1, 33617, 2018, doi: <u>10.1364/OE.25.033617</u>

Efficiency >89% (better than reflection grating) Insensitive to polarization Higher system stability observed Less fragile (in volume, no delicate structure exposed)

Science & Technology Facilities Council Rutherford Appleton Laboratory

CEOI Tech Workshop - Abingdon - 01/05/2019

17

© 2019 RAL Space

Building Block 4 : Photonic Lantern

3x3 multi-mode input to 9x1 single mode output Output waveguide spacing >100µm Multimode to single mode conversion Spatial multiplexing with coherent systems

Highly relevant to LHR and Interferometers

IG2 substrate is X×Y×Z = 10mm × 1mm × 20mm

Summary & Outlook

MATURITY / TRL		
HIGH Integrated LHR	MEDIUM MEMS based FTS	LOW Spectrometer on chips
 Validated on the ground Cubesat IOD ready (MISO) Solar occultation limb Constellation (ESA CAIROS) High resolution vertical profiling Complementary to nadir GHG/climate Mid atmosphere/climate feedback 	 Principles demonstrated in the lab Dedicated improved MEMS needed Need to improve resolution Need to improve coupling 	 Building blocks developed Relevance demonstrated Develop spectrometer lab demonstrator Develop system integration

Science & Technology Facilities Council Rutherford Appleton Laboratory

Acknowledgements

- People
 - Iain Robinson
 - Neil Macleod
 - Helen Butcher
 - Jerome Bredin
 - Alex Hoffmann
 - Marko Huebner
 - David Lee
 - CAIROS team
 - University of New South Wales
 - Heriot-Watt University

20

