

The Tropical Carbon Mission (TCM)

Quantifying tropical carbon fluxes from space using highresolution, multi-view SWIR spectroscopy and aerosol retrievals

H. Boesch, P. Palmer, L. Feng, A. Vick, P. Parr-Burman, W. Grainger, K. Palmer, P. Knowles and many more

The State of the Global Carbon Budget

34.1 GtCO₂/yr **91%**

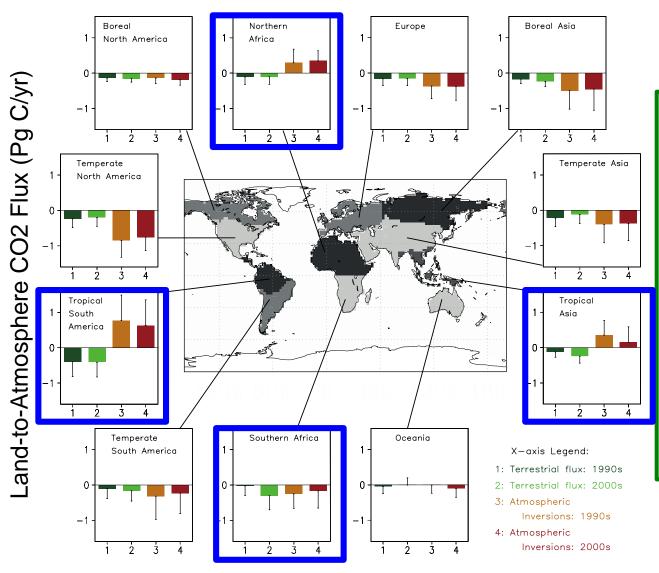
> Sources = Sinks 31%

11.6 GtCO₂/yr

16.4 GtCO₂/yr

44%

Calculated as the residual of all other flux components


9% 3.5 GtCO₂/yr

> **26%** 9.7 GtCO₂/yr

Source: <u>CDIAC</u>; <u>NOAA-ESRL</u>; <u>Houghton et al 2012</u>; <u>Giglio et al</u> 2013; <u>Le Quéré et al 2016</u>; <u>Global Carbon Budget 2016</u>

TCM will address fundamental gaps in our scientific understanding of the tropical C cycle

Decadal average CO_2 fluxes for 11 land regions as estimated by:

- 10 different atmospheric CO₂ inversions for the 1990s (yellow) and 2000s (red) and
- 10 dynamic vegetation models (DGVMs) for the 1990s (green) and 2000s (light green)

TCM Mission Objectives

The primary mission objective of TCM is to reduce the overall uncertainties in the magnitude and distribution of tropical CO_2 fluxes such that we can determine with certainty in any particular four-week period the sign and magnitude of the net carbon balance of the tropics.

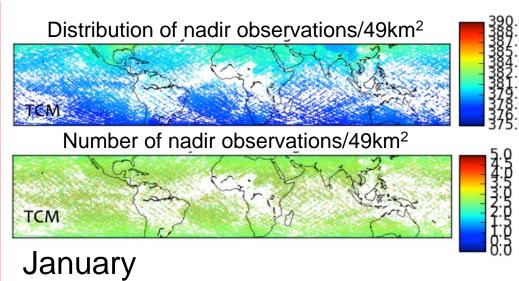
The secondary science objectives of TCM are to: i) reduce the uncertainties in the magnitude and distribution of CO and CH_4 fluxes; and ii) improve source attribution of observed variations in atmospheric CO_2 by using concurrent measurements of CO and CH_4 .

TCM will complement future global survey CO_2 measurements from low-Earth orbiting instruments by improving their ability to infer extra-tropical fluxes.

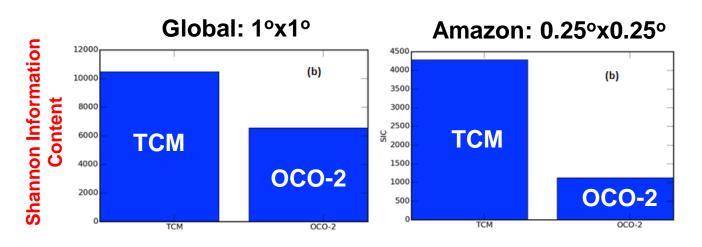
TCM Instruments: high TRL through Heritage

TCM comprises 3 instruments developed from current technology:

- a short-wave IR (SWIR) multi-view spectrometer that will measure CO₂, CH₄, CO, and O₂;
- 2) a co-boresighted aerosol imager; and
- 3) a wide-view cloud imager [optional]
- The SWIR spectrometer is based on the UK GHOST instrument
- The aerosol imager will improve the characterization of atmospheric aerosols and cirrus clouds prevalent over tropical latitudes. It builds on technology and techniques developed for MISR, POLDER and (A)ATSR.
- A cloud imager may be used to help intelligent pointing and post-processing of data


A low-inclination orbit achieves necessary sampling

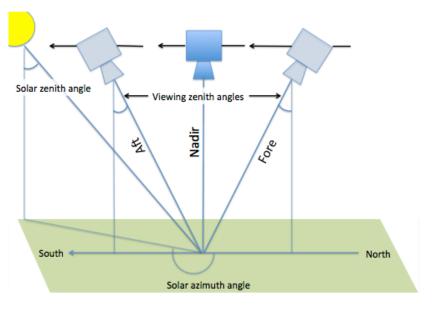
JPL TeamX and STFC CDF studies


In one month TCM will provide ~7 million clear-sky measurements w/out temporal sampling bias

Result: flux estimates on spatial scales close to regional aircraft

The Role of Orbital Precession on Reconstructing Distribution of Atmospheric CO₂

- To assess the observational constraint from TCM, we calculate the Shannon information content of simulated observations
- TCM observations:
 - On a 1° grid: TCM has 60% more information than polar orbiters like OCO-2
 - On a 0.25° grid: TCM has >x3 information than OCO-2 over South America
- Dense coverage of TCM will largely increase our ability to observe CO₂ variations in Tropics and hence provide much improved constraint on tropical fluxes

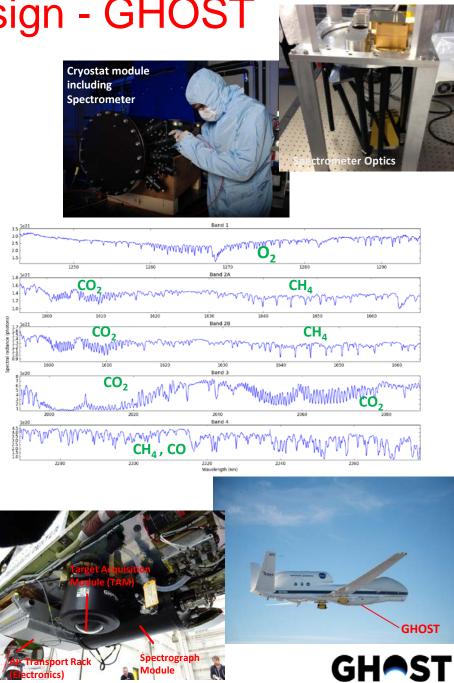


TCM innovates on established mission concepts

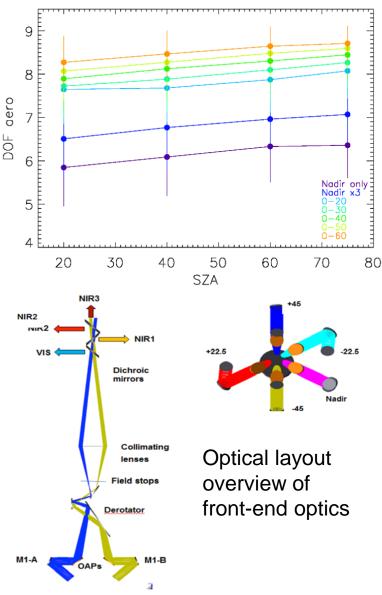
Innovative instrument design Minimize moving parts, size, mass while maximizing S/N: one grating and two detectors, Merging astronomy and EO designs.

Orbital configuration lowinclination orbit focused on tropical latitudes. Observing strategy using (SWIR and aerosol) multi-view angles to better characterize aerosol that currently represent the #1 uncertainty in XCO2 retrievals. viewing angles offsets from nadir.

Frankenberg et al, 2012

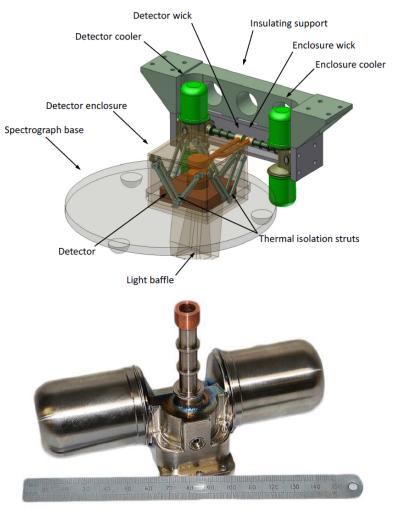

Innovative Instrument Design - GHOST

- GHOST is a novel SWIR spectrometer designed to simultaneously measure columns of carbon gases CO₂, CH₄ and CO from the high-altitude platform Global Hawk
- GHOST uses a innovate optical design to acquire 4 spectral bands with a single detector and grating
- GHOST has been successfully operated on Global Hawk over the Pacific Ocean (March 2015) and deployed on NERC ARSF Dornier 228 aircraft over UK targets (CEOI BCM project)



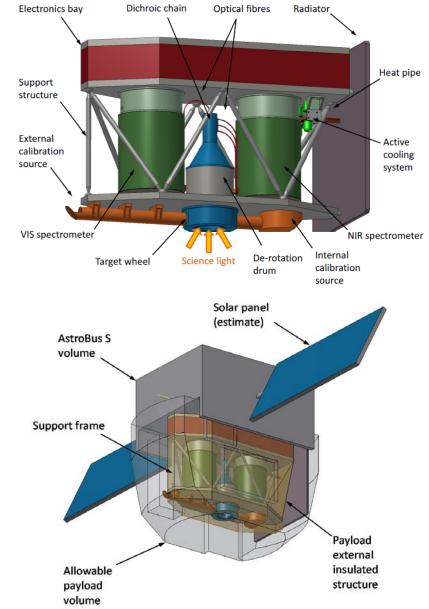
Multi-View Observations

- Multi-view spectroscopy combines the approach for aerosol retrieval with SWIR CO₂ retrievals
 - Increased aerosol information for more accurate CO₂ retrievals
- New design for a front-end optics providing multi-views along and across track by front wheel rotating plus de-rotator both rotating about nadir
- Along track: multiple observing angles of same ground pixel for removal of aerosol affects
- Across track: spatial coverage/swath


Degrees of Freedom for aerosols for system with 3 viewing angle

Detector Assembly and Cooling

- To meet the required signal-tonoise and dark current, the detector needs cooling to 110 K
- Two-stage cooling system, with an independently-cooled detector enclosure and light baffle that reduces the radiative heat transfer to the array
- Baseline is a state-of-the-art small scale Stirling cycle developed by RAL Technology Department


Detector enclosure assembly with active cooling

RAL small scale cooler

Mission design

- Instrument design is consistent with small off-the-shelf platform Astrobus S
- Mass and volume consistent with VEGA C launcher
- Inclined orbit leads to variable illumination conditions on fixed solar panel with only 40% of capability in average. SADM is recommended to increase science imaging time
- Larger power conditioning and distribution unit (PCDU) also recommended to achieve maximum imaging time
- Two ground stations over the tropics: data transfer 1.6-2.0 Tbit/day assuming single pole medium-gain antenna (MGA)

Summary

- The Tropical Carbon Mission TCM is a new science-driven mission concept aimed reducing the uncertainties of the magnitude and distribution of tropical CO₂ fluxes
- The development of the TCM mission concept has been supported by a CEOI EE9 preparation study
- A CEOI project of the 10th call will allow us to demonstration of the multi-view concept (a key selling point of TCM) with airborne demonstration using GHOST
- The main opportunities for TCM will be ESA EE10 and/or bilateral opportunities with countries in tropics