LINKING OBSERVATIONS OF CLIMATE, THE UPPER ATMOSPHERE AND SPACE WEATHER

The LOCUS consortium(s)

G.Savini on behalf of the LOCUS consortium - Bath CEOI NCEO conference June 2017

3

TRL 8 TRL 7

- 7th call: Receiver TRL advancement 1.1-THz Schottky diode receiver asic Tech
 - 3.5 & 4.7-THz Quantum-cascade lasers (QCLs)
 - Wide-band spectrometer enhancement

CEOI objective: Raise payload TRL

Space compact cryocooler

supported by CEOI

- 8th call: System elegant breadboading
 - Off-axis Cassegrain antenna development
 - Optical bench integration & test
 - Thermal vacuum tests of the integrated antenna

LOCUS payload development RAL Space / UCL / Uni. of Leeds / STAR Dundee / Uni. of Huddersfield / Durham Uni. / JCR Systems

Schottky Diodes Quantum

Cascade Lasers

Signal Coupler (Direct)

The LOCUS Elegant Breadboard

Brian Ellison, Daniel Gerber Simon Rea, Hui Wang, Manju Henry, Martin Crook, Tom Rawlings

Janet Charlton, Soe Min Tun

Olivier Auriacombe

(P&A Dept.) Bruce Swinyard[†], <u>Giorgio Savini</u>, David Brooks, Claudio Arena (MSSL) Michael Emes, Berend Winter, Tom Hunt,

Guoyu Yu, David Walker, Hongyu Li

Cyril Bourgenot David J Robertson

Christopher Saunders, Jonathan Friend

LOCUS Science

- The MLT (Mesosphere, lower Thermosphere) is a "gateway" between Earth's atmosphere and near space environment
- Indicative of climate change through:
 - Increased cooling rates Beig et al., JGR, 2011
 - Increase of mesospheric clouds DeLand et al., JGR, 2015
- Not well explored, because it is:
 - Too high for balloons; too low for orbiters
 - Many key species only detectable at THz frequencies

LOCUS Science

- Key MLT observables are:
 - O: Understanding thermal balance and chemistry of Upper Atmosphere (O not globally measured; drives cooling actively & through quenching rates)
 - NO (formed in the MLT) is believed to be transported down, impacting on O₃ chemistry. (relevant to Climate Change)
 - OH, HO₂, CO: Understanding Upper Atmospheric chemistry and dynamics
 - Formation of noctilucent clouds (correlation with atomic Oxygen depletion)

The LOCUS concept

A breakthrough THz remote sounder: www.locussatellite.com

- A limb scanning observatory with THz and IR channels to identify the relevant species.
 - The IR radiative fluxes (which have already been "accessed" in the past allows us to better understand the thermal equilibrium of the MLT but not its chemical composition
 - Simultaneous measurements of IR emission from vibrationally excited CO2, NO, O3 and OH will provide complementary information on thermal structure, polar mesospheric clouds (PMC), energetics and chemical processes.

Band	Centre ν	Species Covered	Predicted
	(THz)	-	Performance
			(NETD K)
1	4.7	O, O ₃	46
2	3.5	OH, CO, HO_2	12
3	1.15	NO, O_3	4
4	0.8	$0_2, 0_3$	3

Centre λ	Bandwidth	Species Covered	Required
(μm)	(μm)		Detectabililty
			$(Wm^{-2}sr^{-1})$
15	5.2	CO_2	1×10^{-3}
9.3	1.74	O_3	$3x10^{-4}$
5.3	0.41	NO	1×10^{-5}
2.07	0.54	OH	1×10^{-5}
L	1	1	1

TABLE II. IR RECEIVER BAND DESIGNATION

LOCUS Satellite & Payload

SSTL150 satellite and payload concept from SSTL led ESA IOD.

Basic heterodyne system concept

- LOCUS uses heterodyne frequency downconversion technology (mixers).
- Quantum cascade laser (QCL) provides local oscillator (LO).
- Small active coolers required to cool QCLs.
- Achieves ~1MHz spectral resolution via highspeed digital sampling.

LOCUS Critical Technologies

Critical TRL: Supra-THz Mixers and LOs

- Developing core mixer technology at 1.15THz (to 4.7THz via GSTP).
- Use electron beam lithography to define GaAs Schottky diode reduce shunt capacitance to improve responsivity at THz frequencies
- Move to low bias InGaAs devices to reduce LO power.
- For 1.15THz & below, use harmonic LO chain.

Flip-chip diode

Under-cut walls near Schottky Contact

7th Call 1.15THz mixers

Split block receiver with horn

• For 3.5THz / 4.7THz, integrate with QCL in single waveguide block.

Critical TRL: Quantum cascade lasers

Powerful and compact continuous-wave THz source for LO:

- "Electron-recycling" → efficient THz generation.
- Fabricated using molecular-beam epitaxy.
- Provided mW output at key LOCUS frequencies – 3.5/4.7THz.
- Waveguide integration successfully achieved.
- Operation demonstrated in an active space-cooler environment (~60K).

200

Active region

50 nm

Off-axis Cassegrain antenna design.

- Optics & receiver mounted onto an aluminium optical bench.
- Compact cryocooler provides 50 K stage for QCL operation.
- IR observation capability.
- Activity will raise to TRL 4/5.

LOCUS breadboard and optics

Tactical Space Coolers

- The RAL tactical mini-cooler provides 1W of cooling at 100K
- LOCUS would be the first Small-class satellite in Low-Earth Orbit (to our knowledge) with an active cooler
- A purposely built radiator to which the cooler is connected, will dump the power generated ~23 W/cooler at the hot end

LOCUS roadmap

- CEOI 7/8th call advances receiver/system to TRL 4/5
- IOD concept study completed for ESA.
- Airborne demonstration proposed for CEOI 10th Call (unsuccessful)
- Future candidate for EE10 mission

The LOCUS Elegant Breadboard

Brian Ellison, Daniel Gerber Simon Rea, Hui Wang, Manju Henry, Martin Crook, Tom Rawlings

Janet Charlton, Soe Min Tun

Olivier Auriacombe

(P&A Dept.) Bruce Swinyard[†], <u>Giorgio Savini</u>, David Brooks, Claudio Arena (MSSL) Michael Emes, Berend Winter, Tom Hunt,

Guoyu Yu, David Walker, Hongyu Li

Cyril Bourgenot David J Robertson

Christopher Saunders, Jonathan Friend

Thanks for listening

For further questions on LOCUS:

- Science: <u>daniel.gerber@stfc.ac.uk</u>
- THz Receivers: <u>brian.ellison@stfc.ac.uk</u>
- QCL technology: <u>a.valavanis@leeds.ac.uk</u>
- Telescope and Optics: <u>g.savini@ucl.ac.uk</u>