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What Is TRUTHS?

TRUTHS is a UK-led operational Earth Observation mission that will initiate
a space based climate & calibration observatory.

TRUTHS will measure incoming and reflected solar radiation 10 times
more_bzitccurately (traceable, in-space, to Sl units) than is currently
possible.

This enables TRUTHS to increase confidence in data from other EO
satellites through in-flight cross-calibration.

More trustworthy data will accelerate climate model predictions and
reduce their uncertainty, thus enabling policymakers to make better and
earlier strategic investment decisions

In addition, hyperspectral data from TRUTHS will address challenges
across all Earth science disciplines

/ \ “In addition to providing validation of observations, the TRUTHS
mission outputs will lead to a reduction in uncertainties of Earth
Traceable Observations that will ultimately lead to better evidence to support
Radiometry climate change policy decisions internationally. Furthermore, the
Underpinning personnel with the skills necessary to deliver this mission reside largely

within the UK and supporting this mission would preserve these skills
and retain the knowledge within the EU”

Terrestrial- &
Helio-
Studies Professor John Loughhead, Chief Scientific Advisor, Department of Business,

k / Energy and Industrial Strategy




What i1s the TRUTHS mission?

« TRUTHS is primarily a climate mission.

« To measure the incoming & outgoing energy from the climate system, including the spectral
fingerprint needed to observationally attribute climate processes & the accuracy needed to detect
climate trends in the shortest possible time.

 Enabling a space-based Climate-Calibration Hyperspectral observatory through increasing
confidence (Trustability) in information derived from EO data

* Near-term: Facilitate an internationally integrated climate quality Earth observing system

* Long-term: Benchmark state of the planet (a) to allow climate model forecast testing (b) provide
unequivocal observational evidence of climate change in shortest time possible

» ‘Reference Calibration’ to upgrade performance/confidence of global EO system inc retrieval algorithms
« Hyperspectral data to match spectral signature of many Bio/geo- physical/chemical parameters
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+ multi-angle

Total Sol Irradiance (TSI) 0.2-35 NA NA >500 Daily 0.02

Solar/Lunar Spectral
Irradiance (SSI)

Earth Spectral Radiance 0.32-24
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A vision of the Future:
‘UK the global home for trusted climate data’

CEMS/Jasmin (‘UK DIAS’) becomes a global hub linked to national data centres

Existing and planned future missions can be upgraded to a climate monitoring syste

;
Lldata =
~ (2 way flows)

=

« TRUTHS provides means to QA & upgrade Worlds EO sensors including potential
constellations of micro-sats, encouraging data to flow through UK

 Provides the ‘Rosetta stone’ of the QA process allowing the development of future

EO ARD & climate services — scene dependant bias correction — interoperability
« Seamless, temporally continuous supply of ‘trustable’ Data & information
 Ready access to high QA data creates national entrepreneurial environment for SMEs to flourish

Policy makers and Financial markets have reliable knowledge of risk for decisions
 Underpins Carbon stocktake



® GCOS “TRUTHS has important

International Demand sotential contributions to

GLOBAL OBSERVING SYSTEM FOR CLIMATE

make both directly through
well-calibrated
measurements and indirectly
through facilitating inter-
calibration of the data from
other platforms” GCOS
2015

Strategy Towards an Architecture
for Climate Monitoring from Space
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....a dedicated mission flying an Sl
traceable calibration reference standard
would be an important element of a future
architecture (see CLARREO and
TRUTHS).”

CEOS/CGMS/WMO (2013)

Action Al6: Implementation of satellite calibration missions

Action Implement a sustained satellite climate calibration mission or missions

Benefit Improved quality of satellite radiance data for climate monitoring
Who Space agencies

Time frame Ongoing



How does TRUTHS impact climate?

TRUTHS provide a benchmark or
snapshot of the state of the planet’s _
climate from which to monitor change W oo
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TRUTHS for Solar Impacts on

Earth  The Sun is the major source of energy to the earth
small changes will have an influence on climate. Over
recent (11 yr) cycles Total Solar Irradiance (TSI) output
change has been of the order of 0.1%, translating to
~1.4 Wm-. However, longer-term solar variation is
expected to be much higher, and has been so in the
past!. Some debate on current change!!

« Although not currently a dominant effect on climate
change, this could change in the future (positive or
negative)

« To best serve long term records an accuracy of 0.01%
(k=1) is needed in TSI.
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_ SOLAR SPECTRUM, VARIABILITY and
Solar Spectral Irradiance ATMOSPHERIC ABSORPTION
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Focus on Needs of ECV's: indicative

TRUTHS providing direct
observation

TRUTHS providing

Climate variable R .
reference calibration

Solar irradiance Climate forcing yes yes
Earth radiation budget Climate forcing, feedback  yes yes
Surface albedo Albedo feedback yes yes
Cloud cover Cloud feedback yes yes
Cloud particle size yes, through spectral
distribution benchmarking ye
Cloud effective particle size yes
Cloud 1ce/water content yes yes
Cloud optical thickness yes yes
Water vapour izl;g;::ewater k- e yes yeEs
Ozone g’;r:;lo)sa]i;}ﬁenc pzotie no (limited resolution) yes

Climate forcing no (limited temporal yes
Acrosols Optical Depth coverage)

Atmospheric correction yes yes
Ocean Colour Carbon cycle/ sinks yes yes
Ice and snow cover Albedo feedback yes yes
Vegetation Ea;;t?; cl? yeic and Alhcdo yes yes
Land Cover/Land Use Surface Radiative Forcing  yes yes
GHGs Climate forcing: emissions  Yes? Large scale screening  Yes




Strategies to identify/remove biases and harmonise
the Earth Observing system are well-established:

But what iIs the Truth?

VIIRS Sensor Degradation Without Re-Calibration Over Time
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TRUTHS for inter-operability

The orbit is asynchronous to the SSO of many EO satellites, to allow match-up with
multiple sensors over a variety of scenes, surfaces & times of day — with coincident view &
illumination angles

At each coincident observation the high accuracy calibration of TRUTHS can be
‘transferred’ to the partner sensor.

_ 2 2 2
Ly — Lrryrhs < \/Ux * Orruras T U

Inter-calibration accuracy is dominated by the reference sensor absolute radiometric calibration
uncertainty.

Studies to determine the inter-calibration accurate consider reference & partner sensor intrinsic
uncertainties as well as the representational uncertainties (u), such as:

» Spectral (resolution & sampling)

» Spatial (geolocation knowledge)

« Viewing angle & SZA

» Polarisation sensitivity

* Temporal mismatch (10 - 30 mins) including atmos. Variation.

*  BRF mismatch

Use the near-simultaneous view [corrected for representative errors ()] to
assess the partner sensor uncertainty, g, and from statistics correct biases
enabling inter-operability & data product fusion of global assets.

Anchoring existing stable Caln targets e.g. Moon - TRUTHS can back correct
the satellites already launched — improving the quality of their data makeing the
most of our existing and historical investments and improving FCDRs & CDRs.




Reference Calibration

 Enables interoperability & Harmonisation

o Spectral & spatial scale allows matching of
footprints and bandwidths

 For Ocean colour sensors allows TOA SI
traceability at uncertainties needed for climate

 multiple sites including coastal zones

Sentinel 2 & TRUTHS match-ups for 1 yr (30 minute window)

Polar orbit allows many near simultaneous cross-overs with
other satellites Nadir (SNO) or by pointing to angle match
 Reduces uncertainties due to:

e [llumination and view angles

« Atmospheric changes

TRUTHS provides the means to transform « Allows many scene types

global EO system, including constellations of E.g. Sentinel 2 using Libya 4 desert TRUTHS can
micro-sats so they deliver traceable iImprove accuracy <1 % for all bands

scientific/climate quality observations -



Traceability to CEOS Cal/Val infrastructure
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Hyper-spectral applications

Hyperspectral data can be convolved for many applicationsg——
enabling an earth system science approach:
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Unmet potential in Measurement confidence ‘traceability’ Unquantified drift in the

current EO investment the top of the EO agenda accuracy of key
Sensors
Emerging market for The Need Climate sensitivity

trustable climate services

predictions are too wide
Differentiator for UK ‘data \ l/

hub’ Low cost access to space
and climate data

Economically argued

‘green’ investment Raising functionality of

Copernicus & services

Quality data underpinned by UK -
technology The Benefits Public engagement in
Repeat business & downstream Sciencel/policy exploitation science and climate
opportunities
“Trustable’ EO/Climate Major contribution to Geo-political positioning

services UKSA/SGP vision




Now What?

Prepare for the future?

 Develop infrastructure to Generate, utilise and exploit higher accuracy data
 What else needs to be done in readiness — Upstream and Downstream
 National DIAS?

« Consider what science/applications can benefit from improved accuracy and/or hyperspectral
data

 Encourage and train next generation scientists and engineers
« Establish framework of QA (certification) from customer to data provider
» Cross-public sector awareness and coordination

A National ‘TRUTHS’ exploitation program to start now in readiness for launch




