

The Measurement and Monitoring of Fire from Space **A New Detector Processing Technique**

Mike Cutter (SSTL), Mark Chang (SSTL), Martin Wooster (Kings College London) Surrey Satellite Technology Ltd, Tycho House, 20 Stephenson Road, Guildford, Surrey, GU2 7YE, UK Tel: +44 1483 803803, e-mail: m.cutter@sstl.co.uk

University of London

Abstract

This poster summaries a CEOI seedcorn activity to evaluate the use of low-cost bolometer detectors for fire measurement and monitoring from space.

Background to Global Biomass Burning

- Fires occur on all continents apart from Antarctica.
- Satellite observations are the only method for wide-scale quantification
- Burned area and active fire signatures are used to make detections.

Cost of fire management is very high (billions \$ / yr) - much 'spotting' done by air.

Fire Environments

Fire Detection Approach

- Identify fires via their intense thermal emissions
- Utilise MIR window (3–5µm) for fire detection as that is the region of primary signal.
- Smoke is largely transparent in (3–5µm) wavelength region
- Signal so strong that fires can be detected at sub-pixel level.

LWIR

LWIR window (8–12µm) allows for discrimination of sun glint and TOA reflections

Bolometer Schematic

Estimated Radiance Signals

	Temperature (K)	Peak spectral emissions (µm)	3.7 µm			10.0 µm	
			Planck	Amplification over background		Planck	
			radiance from fire (W/m ²)	No solar flux	15 % solar albedo	radiance from fire (W/m ²)	Amplification over background
Background	300	9.7	0.4	1	1	10	1
Exothermic reaction	550	5.3	146	360	130	94	9
Glowing combustion	825	3.5	1,556	3,900	1,400	252	25
Cool forest fire	1,000	2.9	3,591	8900	3,200	370	37
Estimated Max ^m heat fire	1,800	1.6	22,383	55,000	20,000	973	98

ULIS Bolometer Detector Test Setup

ULIS bolometer array (UL03041 384 x 288 pixel)

Programme Objectives

- Derive the specification of top level science requirements and mission functional requirements for fire measurement and monitoring from space
- Undertake a MW & LW infrared bolometer detector test programme
- Evaluate the radiometric performance of bolometer detectors for fire measurement and monitoring from space based platforms
- Derive system concepts and identify appropriate design trade-offs

