

Terahertz Spectroscopic Measurements using the SHIRM-WBS II Breadboard

Instrument development & deployment in support of STEAMR

O. Auriacombe^{1,2}, B. N. Ellison¹, H. J. Fraser², S. Rea¹

E-mail: olivier.auriacombe@open.ac.uk

¹Millimetre-Wave Technology Group, RAL Space, STFC Rutherford Appleton Laboratory ²Department of Physical Sciences, Open University

Outline

SHIRM-WBS II radiometer

- Instrument
- Characterisation
- Spectroscopic Measurements
 - Desorption emission spectroscopy
 - Results
- Conclusions

STEAMR Instrument Concept

- STEAMR
 - Stratospheric Tropospheric Exchange & Climate Monitor Radiometer
 - Swedish mm-wave limb-sounder instrument concept
- Spectral coverage
 - LSB: 323.5-335.5 GHz (H₂O, O₃, N₂O, HNO₃...)
 - USB: 343.5-355.5 GHz (CO, HCN, CIO, N₂O...)
- Sub-harmonic image-rejection mixer (SHIRM)
 - Key component in sideband separating receiver (2SB)
 - System Noise temperature : ~4000 K
- High-speed digital spectrometers:
 - 2048-point complex FFT
 - Up to 3 GHz Bandwidth/Sideband
 - Spectral resolution : up to 1 MHz

SHIRM-WBS II Instrument

Stability

- Allan Variance test : Standard deviation over time for each spectrometer bin
- Excellent stability (well controlled environment)
- Long integration time achievable ⇒good sensitivity

Sensitivity

<u>NEδT test: Sensitivity of the instrument :</u>

 τ : Integration time

 T_{syst} : SSB receiver noise temperature

- $NE\delta T = (T_{syst} + T_{scene}) \times \sqrt{\frac{1}{B \times \tau} + \left(\frac{\Delta G}{G}\right)^2 + \frac{1}{B \times N \times \tau_c}} \quad \frac{\Delta G}{G}: \text{ receiver gain variation}$
 - B: Channel bandwidth

Noise equivalent differential temperature, bin 400, $\tau = \tau c$, LSB, N=1, fs= 2.5GHz, LO = 334.5GHz

Desorption emission spectroscopy

- Desorption processes involve during star formation
 - Ro-vibrational features of molecules sublimating from the ice
 - Chemistry within the ice mantles
 - Two desorption mechanisms

Key Objectives

- Laboratory based experiment
- Comparison between desorption mechanisms
- Corroborate results with ALMA telescope
- Star formation models

Star forming Region

Desorption emission spectroscopy

H₂O and N₂O desorption

• Growth of the Ice

he Open Unive

- 1st : Water (H2O) 12 mbar in cell
- 2nd : Nitrous Oxide (N₂O) 14 mbar in cell
- Spectral signature
 - Water (H2O) : 325.15 GHz
 - Nitrous Oxide (N2O) : 326.55 GHz

H2O and N2O desorption

RAL Space

- spectral features
 - Line intensity ↔ amount of molecules desorbing

RAL Space

Ice properties

12

- N2O Desorption
 H2O Desorption
 - Start : T1 ~ 90 K
 - Peak: ~ 130 K

- Start : T2 ~ 230 K
- Peak: ~ 250 K

RAL Space

- System improvement
 - Sensitivity
 - Standing waves
 - Increase frequency range
- Desorption
 - Ultra-high vacuum facility
 - Mixtures : Methanol, different growths

UHV facility at Open University

POSTER: 1.1 THz Receiver for LOCUS

- Total-Power Heterodyne Radiometer
 - Diode Technology
 - Space Cooler Technology

- Target Molecules : NO, CO, H2O, O3
 - LSB : 1139.6 1141.6 GHz
 - USB : 1151.6 1153.6 GHz

Conclusions

- High-resolution sideband-separating instrument
 - Frequency range : 320-350 GHz
 - Spectral Resolution : up to 1 MHz
 - Sensitivity : up to 1K
- Desorption Experiment
 - Physical properties of the Ice
 - Molecule tracer (Chemical reaction within the ice)
 - Development of a new facility for space conditions study

<u>Thank you for your</u> <u>attention</u>

Any questions ?

he Open University