Wavemill: a new mission for highresolution mapping of Total Ocean Current Vectors

Christine Gommenginger¹, Adrien Martin¹, Meric Srokosz¹ Jose Marquez^{3,4}, Sam Doody⁴, Victor Navarro³

¹National Oceanography Centre (UK) ²Ifremer (France) ³Starlab (Spain/UK) ⁴Airbus Defence & Space (UK) ⁵SatOC (UK)

E & SPACE

Context & content

- Wavemill (also known as Ocean Surface Current mission) is a new satellite mission concept under study
 - High-resolution ocean surface currents, surface winds & waves
 - Possible candidate for ESA Earth Explorer 9 call for missions expected in 2015
- Content of this talk:
 - Science drivers for a Wavemill mission
 - Instrument concept
 - Airborne demonstration, geophysical inversion and validation
 - Science, instrument and mission trade-offs
 - Interferometric phase error and calibration strategy
 - Summary & Outlook

Ubiquitous small scale ocean variability

- Seen in high-resolution IR SST and ocean colour images but little data on ocean dynamics at these scales
- Relevant to upper ocean dynamics & atmosphere/ocean coupling

Source: http://oceancolor.gsfc.nasa.gov

• Generally not explicitly resolved by ocean and climate models

Imprint of small scales on the surface

Impact on ocean circulation, vertical transports and biology

- 50% of the vertical transport of ocean biogeochemical properties takes place at scales < 100km (Lapeyre and Klein, 2006)
- Fronts and filaments in vicinity of eddies induce large ageostrophic circulation and vertical velocities
 - w ~10m/day compared to 0.5 m/day for Ekman pumping
- Eddy-induced upwelling is amplified by <u>eddy/wind</u> <u>interactions</u>
- Resolving the sub-mesoscale in ocean models reduces SST biases and has <u>significant impact on climatic scales</u> (100yrs) on large scale ocean circulation, meridional heat transport, mixed layer depth, etc..

The Wavemill concept

- Interferometric Synthetic Aperture Radar
 - Active microwave; Ku-band (2.2cm)
 - Single-pass along-track interferometry between two SAR images provides direct estimates of ocean surface motion
 - Each scene viewed from two azimuth angles to get motion direction
- What's new with Wavemill?
 - Measures total ocean surface current vectors
 - Includes ageostrophic currents (unlike altimetry)
 - Measure <u>current direction in a single-pass</u>
 - <u>1km</u> spatial resolution; <u>0.05 m/s</u> accuracy
 - Wide swath
 - 2 x 100 km or 1 x 200km swath (TBD)
 - <u>High-resolution wind vectors (1 km)</u> and directional wave spectra (swell)
 - <u>Coincident wind/wave/current data for the first time</u>
 - Measurements <u>right up to the coast</u>
- Instrument & mission configurations currently under study (two competing ESA OSCM studies ongoing)
- Exploring SAR Interferometer calibration solutions (CEOI)
- ESA Earth Explorer 9 mission proposal in prep. led by NOC and Ifremer

Heritage and complementarity with other missions

- TerraSAR-X and TanDEM-X
 - Opportunistic demonstration of current retrieval with spaceborne ATI since 2010
- Envisat ASAR and Sentinel-1
 - SAR Doppler Centroid anomaly (Chapron et al., 2005)
- Sentinel-3
 - Synergy with SST and ocean colour and high-resolution SAR altimetry (SSH, wave height, wind)
- Surface Water & Ocean Topography mission (SWOT)
 - Wide-swath ocean altimetry & geostrophic currents
 - To resolve ocean mesoscale variability at 10-25 km
 - SSH at 1km resolution over 2 x 100km swaths
 - Launch expected 2020
 - Strong scientific complementarity between highresolution SSH from SWOT and high-resolution total currents from Wavemill

Wavemill airborne demonstration (Oct 2011)

Flight over Menai Strait °

Current vector measurements right up to the coast

Marquez et al., IGARSS'2012

Validation against ground-truth in Liverpool Bay

current 0.7m/s

- Westward tidal current
- Light wind from the south
 - short fetch
- Low energy swell from NW
- Shallow waters

Geophysical retrieval: currents, wind and waves

Wave artefact velocity

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Science, instrument and mission tradeoffs

- Complex relations between spatial resolution, antenna length, power, swath width, noise level, coverage, re-visit time, data volumes,...
 - Large, power-hungry, data-intensive instrument
 - Special care needed for calibration of interferometric phase
 - Error in interferometric phase = error in retrieved current
- Geophysical inversion: work in progress
 - What is the optimal choice of incidence angles?
 - Is there a scientific justification for multiple polarisation?

Science, instrument and mission tradeoffs

- Complex relations between spatial resolution, antenna length, power, swath width, noise level, coverage, re-visit time, data volumes,...
 - Large, power-hungry, data-intensive instrument
 - Special care needed for calibration of interferometric phase
 - Error in interferometric phase = error in retrieved current
- Geophysical inversion: work in progress
 - What is the optimal choice of incidence angles?
 - Is there a scientific justification for multiple polarisation?

Interferometric phase error

- Interferometric phase error = retrieved current error
- Dominated by platform attitude (pitch) errors
 - Sentinel-1 attitude knowledge (StarTracker): 70µrad => 50 cm/s
 - Astrix[®] 200 Inertial Measurement Unit: 4µrad => 3 cm/s
- Need for very accurate baseline knowledge
 - Present technology permit: 0.01mm => 0.5 cm/s

Calibration strategy (Starlab)

- Combination of ATI and Doppler Centroid radial velocity estimates
 - => derive platform attitude value
- Combination of Fore and Aft looking antennas
 - => derive along track baseline deformation
- Combination of Left and Right antennas
 - => derive combination of attitude and baseline deformation
- Need land calibration to correct the IMU drift

Summary and Outlook

- Wavemill could deliver new high-resolution observations of current and wind vectors at 1km resolution, supported by swell data
 - Relevant to research on air-sea interactions, ocean/atmosphere coupling, upper ocean dynamics, vertical transports, large scale ocean circulation, with implications for long-term climate forecasting
- Trade-off analyses are underway to assess how science needs can be addressed given various instrument options and mission constraints
- Calibration techniques are underway and feed the mission concept (single versus dual swath)

Summary and Outlook

- Concept was successfully demonstrated with airborne campaign
 - Excellent data quality and good progress in quantifying contributions to measured motion by wind and waves
- Need more airborne flights to test
 - Various geophysics conditions
 - Instrument features not yet tested (polarisation, ATI vs. DCA)
- Need access to an aircraft!

Summary and Outlook

Proposal in prep. for ESA Earth Explorer 9 mission call

• But extended delay and ongoing uncertainties about exact timing of the ESA call and the available budget

Thank You

For more information, contact: Christine Gommenginger cg1@noc.ac.uk National Oceanography Centre Southampton, UK

Thank You

20

For more information, contact: Christine Gommenginger <u>cg1@noc.ac.uk</u> National Oceanography Centre Southampton, UK

Example areas of scientific interest to identify sampling needs and orbit options

- Example regions (not fixed!) for sub-mesoscale monitoring could include:
 - Highly-variable areas (W. boundary currents), quiet areas (subtropical gyres), well-monitored areas (Agulhas, NW Europe, long-term mooring sites)
 - Other ?
- Sampling needs:
 - fast-revisit (< 3 days) to view/follow small ocean features
 - Global coverage within 1 month
- Orbit choices
 - See talk by Ben Dobke

Geophysical retrieval: currents, wind and waves

Wave artefact velocity

Interferometric phase error

- Baseline errors
 - 0.01mm => 0.5 cm/s
- Attitude errors (pitch)
 - StarTracker (S1) 70µrad => < 50 cm/s
 - Astrix[®] 200 Inertial Measurement Unit (IMU): 4µrad => < 3 cm/s
- Mis-registration errors
 - < 1 cm/s
- Instrument noise
 - < 2 cm/s

