

High TRL Photon Imaging Detector for Space Situational Awareness Applications

Jon Lapington, University of Leicester

Scope

- Overview of photon counting applications
- Space situational awareness applications
- Project aims and objectives
- New detector technologies
 - Photocathodes enhanced QE and lifetime
 - Microchannel plate higher lifetime & efficiency
 - Square format image tubes low mass, high fill factor
 - Image readout high temporal and spatial resolution
 - Adaptive electronics scene-dependent optimisation
- Success criteria
- Partner heritage
- Summary

Imaging photon-counting applications

- Space situational awareness applications
 - Faint object tracking
 - Space weather
 - imaging and spectroscopy of planetary aurora and limb
 - magnetospheric charge exchange emission
- Space science applications
 - high resolution imaging and spectroscopy
 - optical and UV planetary science and astronomy
- Additional terrestrial applications
 - Biological and medical sciences
 - time resolved spectroscopy e.g. fluorescence lifetime imaging
 - High energy physics
 - picosecond timing for Cherenkov detection
 - Materials analysis
 - semiconductor testing
 - Defence and security sectors
 - neutron imaging, 3D imaging, low light level surveillance, threat detection.

Space situational awareness: Faint object tracking

Slow frame rate CCD

- Detector sums:
 - Object counts
 - Diffuse background
 - Readout noise
- Low frame rate → sums over all Δt
- Object signal competes with sky background

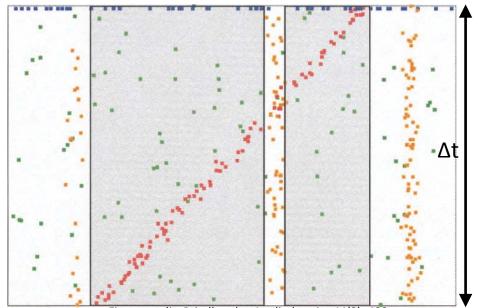
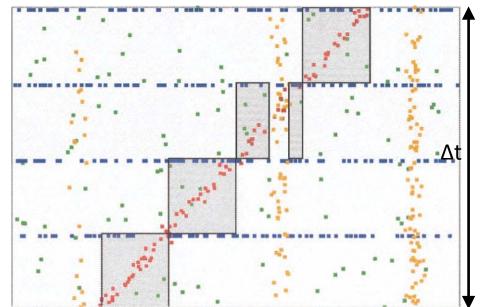


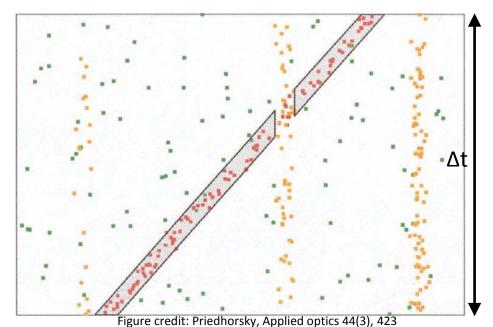
Figure credit: Priedhorsky, Applied optics 44(3), 423

Horizontal axis: space Vertical axis: time Object counts: red Diffuse background: green Readout noise: blue Detector sums grey region Space situational awareness: Faint object tracking

Higher frame rate CCD

- Detector sums:
 - Object counts
 - Diffuse background
 - Readout noise
- Multiple frames over Δt
- Object signal competes with:
 - lower sky background
 - Higher readout noise

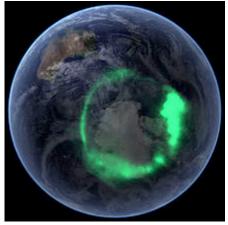



Figure credit: Priedhorsky, Applied optics 44(3), 423 Horizontal axis: space Vertical axis: time Object counts: red Diffuse background: green Readout noise: blue

Detector sums grey region

Space situational awareness: Faint object tracking

Photon counting detector


- Sub-ns time resolution
 = very high frame rate
- No readout noise
- Sky background:
 - summed only per resolution element

Horizontal axis: space Vertical axis: time Object counts: red Diffuse background: green Readout noise: blue Detector sums grey region

Space situational awareness: Space weather

- Techniques to measure solar wind interaction
- Predictions for effects on:
 - Satellite health and survival
 - Space and terrestrial communications
 - Terrestrial weather
- Auroral and limb imaging

Aurora Australis from NASA IMAGE satellite

- Magnetospheric charge exchange emission
 - Open-faced detector with soft x-ray photocathode

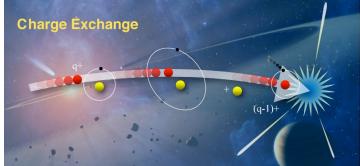
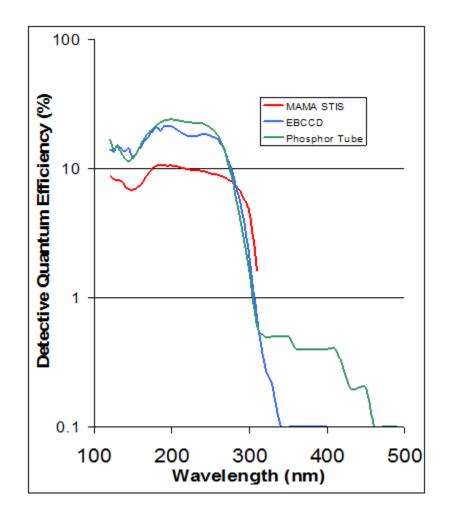


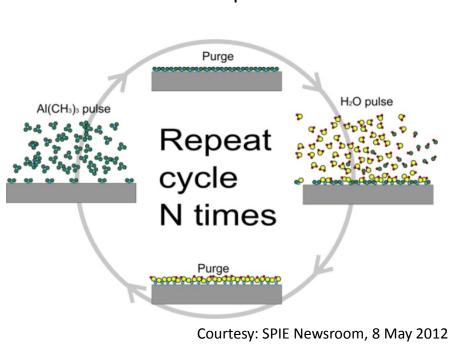
Image credit: D. Bodewits (University of Maryland)

Project Aim


- Develop high TRL technology demonstrator
 - Combine latest technological developments
 - Covering all aspects of detector performance
 - Improved photo-response (efficiency)
 - Imaging performance (rate/resolution trade-off)
 - Sub-nanosecond single photon timing
 - Mechanical format for high density packing
 - Enhanced detector lifetime

Project Objectives

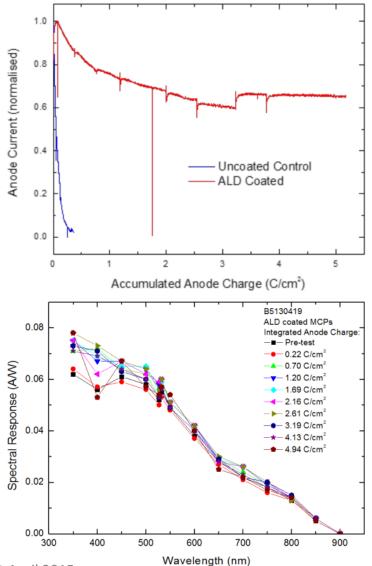
- UV solar-blind photocathode technology
 - Photek's state-of-the-art cut-off of optical wavelengths
 - allows UV detection at photon counting sensitivity at high background light levels
- Enhanced MCP performance using atomic layer deposition (ALD)
 - Enhanced detector lifetime, quantum efficiency, lower noise, higher signal dynamic range, lower HV
- Square tube, thin wall, low mass detector design
 - high fill factor, detector arrays with low dead area.
- High speed capacitive division image readout (C-DIR)
 - low complexity, cost-effective, centroiding image readout
 - Enhanced count rate, image resolution, and time resolution performance
- Adaptive digital processing electronics
 - scene dependent optimisation for enhanced dynamic range
 - digital filtering for real-time count rate vs image resolution trade-off
- Demonstrator system combining enabling technologies
 - TRL 6 typically required for entry into space missions
- Performance goals:
 - − Resolution: ≤10 µm FWHM, photon rate: ≥5 Mcount/s, lifetime >10C/cm² \equiv ~10¹⁴ event/cm²


Photocathode developments

- Solar-blind CsTe photocathode
 - Photek world-leading performance
- Optical wavelength rejection
- Cut-off of two orders of magnitude >350 nm.
- Peak quantum efficiency (QE) at 254 nm 9% (HST) →34%
- Applications in the scientific, commercial and military sectors
- Detection of distant, faint UV sources
 - Auroral imaging, UV astronomy
 - flames, jet engines, missile plumes
 - high level of optical background rejection (cf. CCD red leak)

MCP enhancement using Atomic Layer Deposition

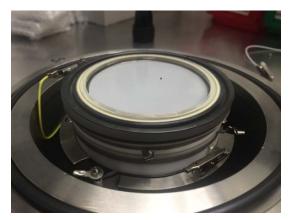
- Production of very thin, pinhole-free conformal films
- Two step, sequential, self-limiting process
- Two precursors react to produce atomic scale films

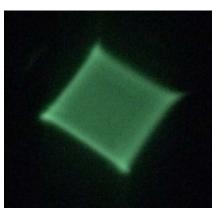


Alumina deposition

- Low vacuum (viscous flow)
- Elevated temperature (100's °C)

ALD enhanced MCPs


- ALD coating of conventional MCPs
 - several monolayers of material
- Enhance the secondary electron yield (SEY)
- Improved QE due to "first electron bounce" statistic
 - ALD coating enhances MCP QDE by over 20%
- lower operating voltage due to the higher SEY
- increased detector lifetime due to reduced MCP outgassing
 - ALD seals in adsorbates on the MCP surface
 - Reduces ion feedback which causes QE loss



Square format MCP detector

- Thin-walled square tube recently developed
- Application-friendly square image format
- Easier close packing of tube arrays
- Smaller dead space between active readout regions
- Project aim: enhance TRL for space mission adoption

precision photon imaging and timing readout

Photoelectron

Event charge is localized on resistive layer Transient signal induced through dielectric Dielectric substrate part of vacuum housing Induced signal sensed by C-DIR readout

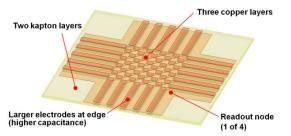
C-DIR - a capacitively coupled electrode array

C-DIR – the "Capacitive Division Image Readout"

Optical photon

MCP stack

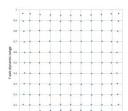
Resistive layer


Capacitively induced signal

Capacitive division - breakthrough performance


C-DIR

- A new concept in centroiding readouts
- Purely capacitive picosecond timing potential
- No resistive noise no partition noise
- 25 x 25 mm² C-DIR pattern capacitance of <8 pF!</p>
- Very low total noise (<200 e⁻ rms at τ =250ns) \rightarrow 1000 × 1000 pixel² at 10⁶ electrons.
- Simple linear algorithm minimal processing
- Excellent linearity utilize >80% of anode
- Capacitances intrinsic in pattern geometry


Optimised flex-PCB C-DIR readout

C-DIR equivalent circuit

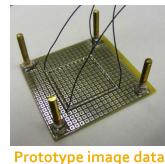
Linearity simulation

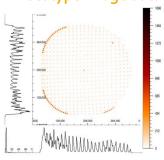
CEOI Technology Conference 21st April 2015

Applications

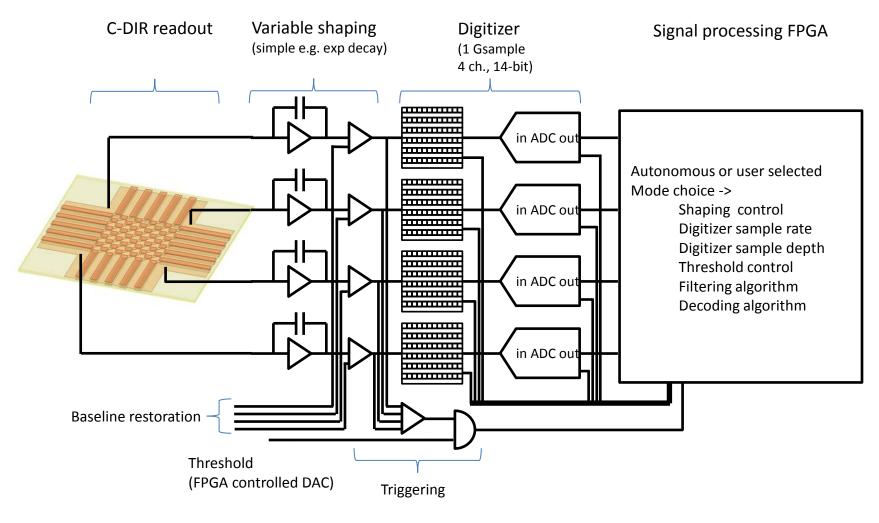
- Wide-field fluorescence lifetime imaging (FLIM)
- Sub-nanosecond photon-timing/imaging
- pptv trace gas measurement using BBCEAS
- UV astronomy imaging and spectroscopy
- TOF applications in materials science

Photocathode

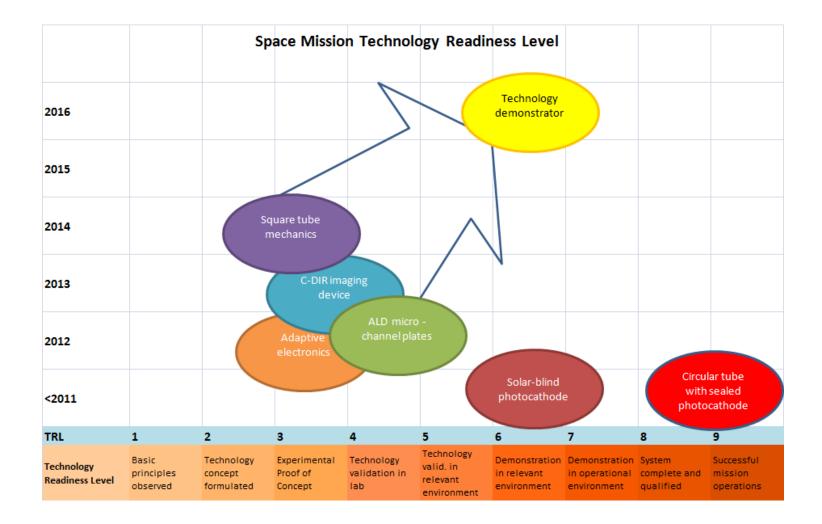

Event charge cloud


Dielectric substrate

C-DIR readout


Ring Imaging Cherenkov detectors for HEP

Proof-of-concept prototype


Adaptive Electronics

Success Criteria

- Combination of enabling technologies
 - In a single device at TRL 6
 - As a fallback 2 devices (circular and square formats)
- Detector performance goals:
 - Resolution: $\leq 10 \ \mu m FWHM$
 - − photon count rate: \geq 5 Mcount/s
 - lifetime >10C/cm² \equiv ~10¹⁴ event/cm²
- Adoption in space mission proposal(s)
 - Enquiries very welcome

Success Criteria (2)

Project partner heritage

- University of Leicester, Space Research Centre
 - MCP detectors for X-ray/UV astronomy
 - Exosat-CMA
 - ROSAT-WFC
 - AXAF-HRI
 - J-PEX
- Photek Ltd.
 - Custom space qualified MCP tubes for astronomy, EO and space weather
 - ACE Advanced Composition Explorer
 - XMM Optical Monitor
 - MSX-UVISI Detector
 - TIMED-GUVI Global Ultraviolet Imager
 - DMSP-SSUSI Special Sensor Ultra-violet Spectrographic Imager
 - Astrosat-UVIT Ultra-Violet Imaging Telescope

Summary

- Assembly of state-of-the-art detector technologies
 - Enhanced QE, life time, imaging, square format
 - Scene adaptive performance optimization
 - Aimed at Space situational awareness applications
 - Faint object tracking
 - Space weather

- High TRL demonstrator for early mission adoption

Acknowledgements

- University of Leicester
 - Steven Leach Project Scientist
- Photek Ltd.
 - Martin Ingle Project manager