

Demonstration and assessment of laser heterodyne radiometry for CO_2 sounding

CEOI Technology Conference 21st-22nd April 2015

Alex Hoffmann, Marko Huebner, Gary Williams, Neil Macleod, Richard Brownsword, and

Damien Weidmann

RAL Space Laser Spectroscopy Group

Science & Technology Facilities Council Rutherford Appleton Laboratory

Scientific rationale

... and translation into measurement requirements

Rutherford Appleton Laboratory

Our approach: LHR

What is a Laser Heterodyne Radiometer?

- A <u>PASSIVE</u> thermal infrared sounder
 - Even though there is a laser in it
- A <u>SPECTRO</u>-radiometer
 - Observes the unique spectral signatures of chemicals in the atmosphere
- \blacktriangleright A <u>new</u> RS technology enabled by advances in semiconductor <u>mid-IR</u> lasers
 - Never deployed in space so far
 - No scattering

Instrument design and performance

Some advantages of Laser Heterodyne Radiometry

tracking: small FoV, compact optics, high SNR

I_{QCL} /A

RAL Space

Transmission

 \Rightarrow validate instrument performance model

4

LHR – CEOI Tech Conference – 21st April 2015

