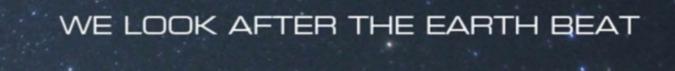
OmniSat-HAPI Constellation

CEOI Technology Conference, Abingdon 22nd April 2015

Dr Claire Parfitt (TAS-UK), Dr Roland Leigh (University of Leicester)

- New mission concept to measure tropospheric nitrogen dioxide (NO₂) content with high temporal resolution.
- Mission concept:
 - The High-resolution Anthropogenic Pollution Imager (HAPI) instrument
 - The TAS-UK OmniSat nanosatellite concept
- Winner of ESA SysNova R&D Studies Competition for Innovation.



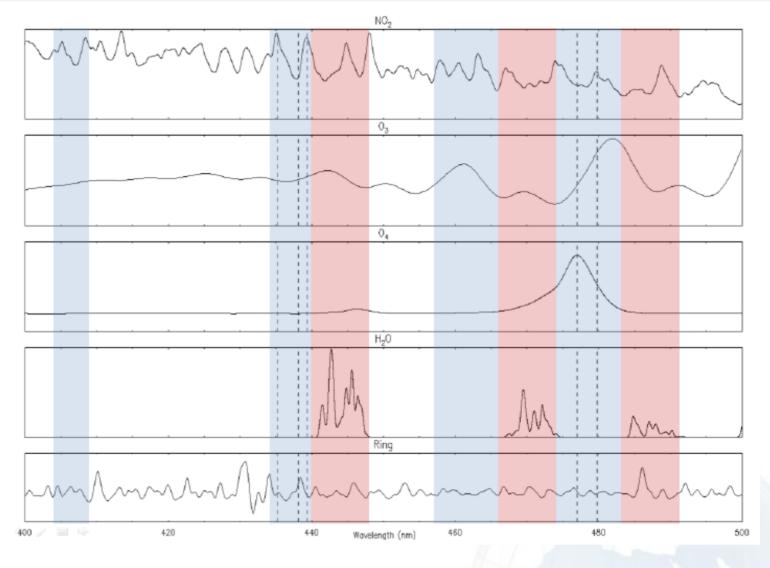
Scientific Rationale

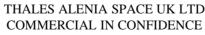
- Nitrogen dioxide (NO₂) is a key atmospheric pollutant.
- Correlation with human mortality, hospital admissions and respiratory illness.
- ~ Cost:
 - ~ ~ €20 billion per year to UK economy
 - ~ ~ €600 bn across the EU
 - > €1 tn globally.
- Current measurements are low resolution, available once or twice per day.
- UK well placed to lead new downstream service development and delivery.

The HAPI Instrument Concept

Evolution of instrument concept

- CompAQS/UCAM (Ultra Compact Air Quality Mapper)
 - Discrete wavelength retrieval
 - Neural network retrieval
 - Filter array detector
- High-resolution Anthropogenic Pollution Imager (HAPI)
 - Discrete wavelength retrieval
 - New direct retrieval
 - Separate filter imaging systems
 - High maturity of component technologies.

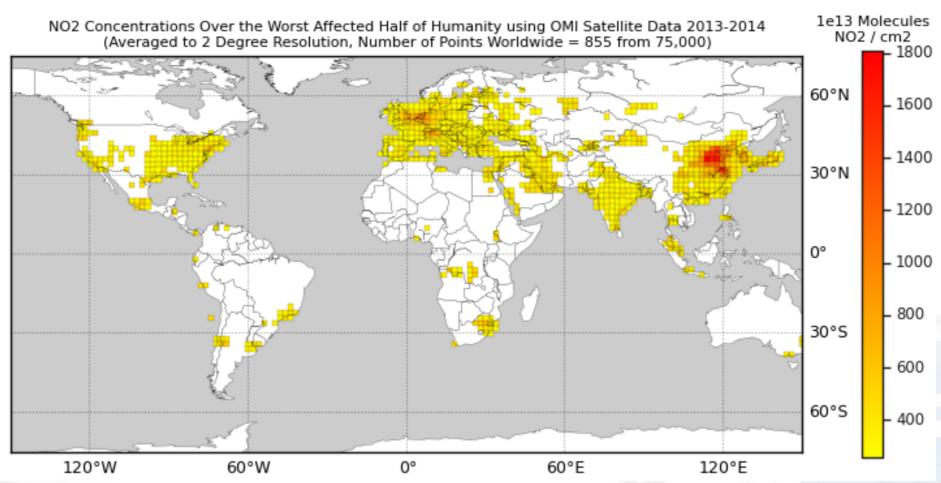



The High-Resolution Anthropogenic Pollution Imager (HAPI) instrument concept.

Rather than use hyperspectral information in a traditional DOAS fit, derive NO₂ from discrete spectral bands, and configure a new instrument design.

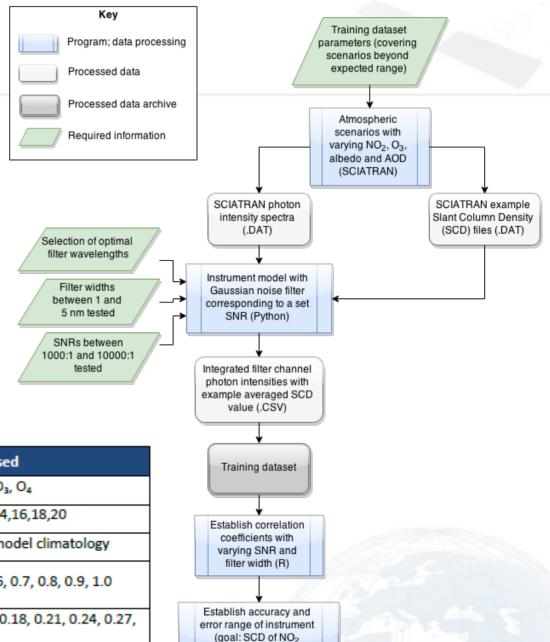
Heritage: TOMS,Brewer, DIAL

Instrument Performance


- Tropospheric NO₂ detection
- 300m GSD
- Cloudiness of the scene
- Accuracy of 2x10¹⁵ molc/cm² of NO₂
- Compressed data

Locating NO₂ emission hotspots

- NO₂ concentrations over the most polluted half of humanity
- ~ ~3% of the Earth's total surface

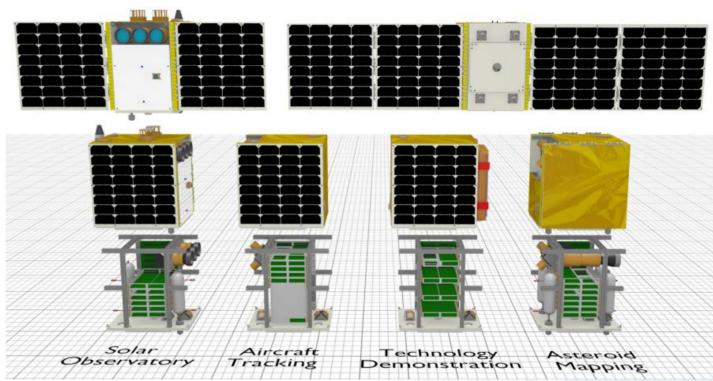


The instrument model

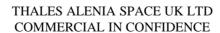
- A range of scenarios input into a radiative transfer model.
- Spectra and slant columns produced.
- Spectra processed through an instrument model, varying filter FWHM and SNR.
- A retrieval developed, and performance assessed.

measured to accuracy of 2x10¹⁵ molecules/cm²)

Parameter	Values used
Species	NO ₂ , H ₂ O, O ₃ , O ₄
NO ₂ boundary layer VMR (ppbv, 2km high box profile)	0,2,4,6,8,10,12,14,16,18,20
O ₃ profiles	10 profiles from MPIC model climatology
Aerosol optical depth (550 nm, SCIATRAN default extinction profile)	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Surface albedo (Lambertian, wavelength independent)	0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.30
Viewing Geometry	Nadir

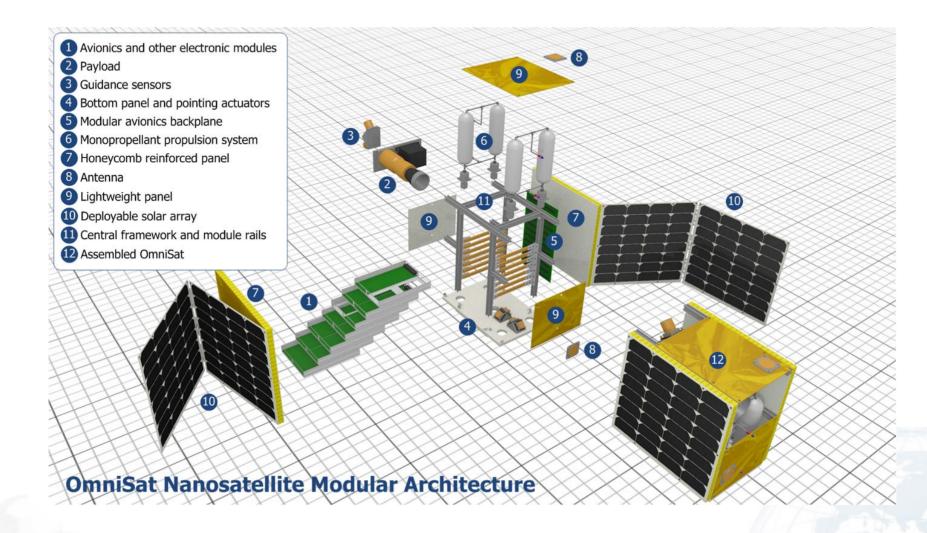


The OmniSat Design Concept

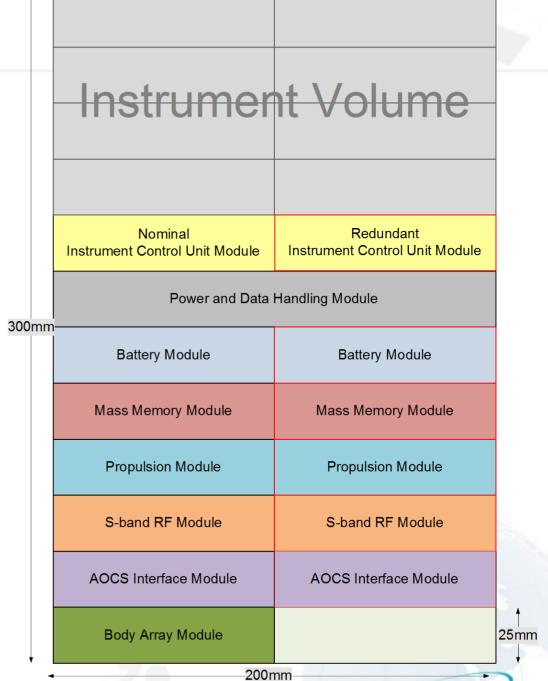


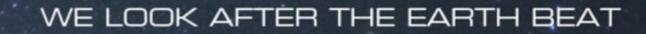
OmniSat Background

- Outcome of recently completed ESA study (Ref. TEC-SYE/2011.11/AS)
- OmniSat platform
 - Modular
 - Flexible
 - Capable
 - ~ Reliable
 - > 150 m/s delta-V
 - ~ 400km 1000km
 - $\sim 20 50 \text{ kg}$



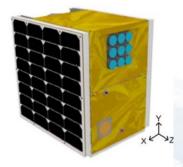
Modular Nanosatellite




OmniSat-HAPI Module Design

- Mass
 - ~ 28.6 kg total (inc. 20% margin)
- Power
 - 11 W average
 - ~ 60 W peak
- Volume 32 litres
- 4 year lifetime
- Three-axis stabilisation
- 75 ms⁻¹ delta-V
- Up to 5 Mbs⁻¹ downlink S-band

OmniSat Performance



OmniSat performance overview

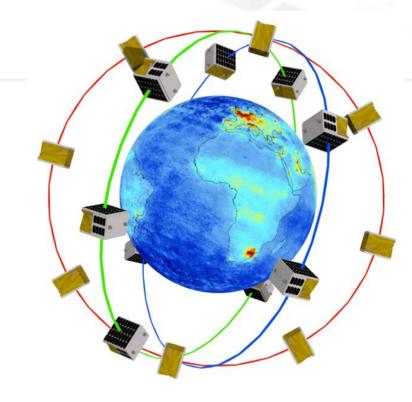
- Power provided by 3 body mounted solar arrays and a redundant 5 Ah battery
- AOCS performance
 - Fixed Earth target
 - → 30° off nadir slew
- Hydrazine propulsion system
 - > 75 m/s delta-V
 - Operational orbit of 650 km
 - 25 year debris requirement
- AOCS requirements
 - Fixed Earth target
 - → 30° off nadir slew

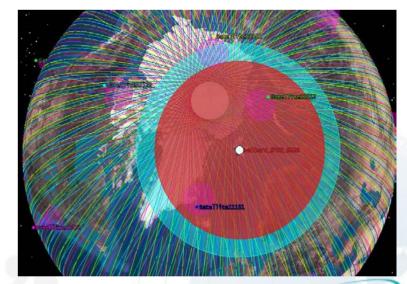
OmniSat performance overview

- Power and Data Handling
 - Handles cross strapping
 - Fully redundant
 - Supports SPI, UART and CAN bus interfaces
 - No master slot
- 10 GB mass memory
 - Up to 9 days worth of HAPI data
 - Flight spare or continual back up
- Communications
 - S-band uplink: up to 100kb/s
 - S-band downlink: up to 5Mb/s
 - Optional X-band module

Reliability and Redundancy

- Flexible level of redundancy
- High redundancy OmniSat
 - 5 extra redundant modules
 - 2.2 kg mass difference
 - Same volume
 - Reliability of 0.97 for 4 year mission
 - Up to 21/24 satellites remaining after 4 years


OmniSat-HC Mission Concept and Design



Constellation Design

- ~ 24 OmniSats in a Walker constellation
- P3S8F1: 3 planes, 8 OmniSats per plane, 15° phasing
- 300 m spatial resolution
- ~ 200 km swath
- ~ 650 km orbit altitude
- Svalbard/Trollsat Ground Station
- <2 hr delay from capture to end user</p>
- Data every 1.6 hours (average)

Summary of Conclusions

- A mission concept to measure tropospheric nitrogen dioxide (NO₂) content with high temporal resolution over the diurnal cycle has been devised.
- SysNova R&D Studies Competition for Innovation winner:
 - CDF follow on study in September
 - Further analysis of the instrument and platform agility
- HAPI instrument demonstration now required to raise TRL from 3 to 6.
- No unachievable technical challenges are foreseen.

Thank you

Dr Claire Parfitt: claire.parfitt@thalesaleniaspace.com Dr Roland Leigh: rl40@leicester.ac.uk

