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Key Questions:

 What is the short-term (5 year) variability seen in observed
outgoing longwave radiance spectra?

 How do these signals compare to
- broadband observations?
- model simulations and what can this tell us about the
representation of the processes driving
variability/change?

* Are observed long-term change signals robust?



Some Kkey Issues to consider
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Infrared Atmospheric Sounding Interferometer
(IASI)
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o EPS programme
Metop-A launched Oct. 2006, B launched Sep. 2012
and C due for launch in 2017 (nominal 5 yr lifetime)

e |ASI: 645-2760cm (3 bands), 0.5cm-1, 2x2
pixels 12km at nadir, <0.5K @ 280K

o Study employs 5 years L1c radiance data ,
from IASI on Metop-A (2008 to 2012), 50TB f,{-

e Data reduction: spectral & spatial resolution, /B
‘nadir’ obs. only
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Interannual spectral variability (2008 to 2012)

Deviation from
overall global annual
mean for each year
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Consistency with broadband measurements?

CERES SSF: broadband and window fluxes
Different measurement scales so use coefficient of variation, CV =0/ u

Broadband ‘window’ comparison (833-1250cm-?)
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« Variability about mean < 1% (most latitude bands)
e Similar latitudinal pattern — sampling characteristics have only small impact



Consistency with broadband measurements?
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Increasing spatial scale >

Window inter-annual variability reduces most rapidly with increasing scale
Results in non-window variability becoming dominant at global scale

Difference between IASI BB and CERES BB behaviour suggests an
important role for the far infra-red in determining all-sky inter-annual variability at
the global scale

Spectrally, global inter-annual variability < 0.17 K, < 0.05 K across window
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Consistency with Reanalyses?

OBSERVATIONS
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Summary

5 years of IASI data have be used to probe how the emission to space
varies spectrally on interannual timescales.

The maximum variability is observed at high latitudes across 15um CO,
band: >1K at the smallest spatial scales (10°), (cf <0.5K window)

The variability reduces with increasing spatial scale across the spectrum,
although the rate of change varies with wavenumber; a more noticeable
reduction is seen in the window variability compared to that seen in regions
sensitive to the upper troposphere.

These findings are in agreement with observations from CERES over the
same 5 year period and imply that at the largest spatial scales fluctuations in
mid-upper tropospheric temperatures and water vapour, and not cloud or
surface temperature, play the dominant role in determining the level of
inter-annual all-sky OLR variability.

Although simulations from reanalysis show an encouraging level of
agreement in general, they do not replicate this scaling behaviour.

The levels of variability seen are very small and current satellite observing
systems are still not optimised for climate studies.
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CLARREQO Status

Volume 94 Number 10 October 2013

POLLUTION FROM WILDFIRES
e GLOBAL CLOUD DATASETS

WEATHER DATA FROM CARS

A MEASURE
FOR MEASURES

In-Orbit Calibration of
Climate-Change Monitoring
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ACHIEVING CLIMATE CHANGE
ABSOLUTE ACCURACY IN ORBIT

Refractivity Observatory sull

shortens the time to detect the magnitud
of climate'change at the high confidence
level that decision makers need.

b . ~

T HE CLARREO VISION FROM THE NATIONAL RESEARCH

COUNCIL DECADAL SURVEY. A critical issue for climate change

observations is that their absolute accuracy is insufficient to confidently
observe decadal climate change signals (NRC 2007; Trenberth et al. 2013;
Trenberth and Fasullo 2010; Ohring et al. 2005; Ohring 2007). Observing
decadal climate change is critical to assessing the accuracy of climate model pro-
jections (Solomon et al. 2007; Masson and Knutti 2011; Stott and Kettleborough
2002} as well as to attributing climate change to various sources (Solomon et al.
2007). Sound policymaking requires high confidence in climate predictions
verified against decadal change observations with rigorously known accuracy.
The need to improve satellite data accuracy hasbeen expressed in P
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Economic Value of Climate Observations
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Abstract
The Interagency Working Group Memo on the social cost of carbon 1s used to compute the AV al I ab I e free an d O p en aC C eS S 0 n I I n e

value of information (VOI) of climate observing systems. A generic decision context is posited

in which society switches from a business as vsual (BAU) emissions path to a reduced @ h tt p : //I I n k . S p r I n g e r . C O m

emissions path upon achieving sufficient confidence that a trigger variable exceeds a stipulated .
critical value. Using assessments of natural variability and uncertainty of measuring /art I C I 9/10 . 1007%2 FS 10669-0 13-945 1_8
instruments, it is possible to compute the time at which the required confidence would be

reached under the current and under a new observing system, if indeed the critical value is

reached. Economic damages (worldwide) from carbon emissions are computed with an

integrated assessment model. The more accurate observing system acquires the required

confidence earlier and switches sooner to the reduced emissions path, thereby avoiding more

damages which would otherwise be incurred by BAU emissions. The difference in expected

net present value of averted damages under the two observing systems 1s the VOI of the new

observing system relative to the existing system. As illustration, the VOI for the proposed

space-borne CLARREOQ system relative to current space-borne systems is computed.

Depending on details of the decision context, the VOI ranges from 2 to 30 trillion US dollars.

Electronic supplementary material

The online version of this article (doi:10.1007/510669-013-9451-8) contains supplementary
material, which 15 available to aunthornized users.

Keywords Value of information — Climate observing system — Social cost of carbon — DICE
- CLARREO




Upcoming Orbital Missions




EXTRA SLIDES
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CLARREO Mission Status

 Current NASA launch schedule for CLARREO is 2023

« CLARREO continues science studies and risk reduction activities in pre-
phase A.

» 26 journal papers published in 2013, including BAMS mission overview,
and paper on the $12 Trillion economic value of higher accuracy.

* IR calibration demonstration system at NASA Langley continuing
development and NIST verification tests.

* IR instrument at U. Wisconsin reaches TRL-6 environmental testing

* RS calibration demonstration system at NASA Goddard continuing
development and NIST verification tests.

* RS instrument at Univ of Colorado completes high altitude balloon flight
(30km altitude) in Sept 2013, second in Sept 2014.

« Continued studies on smaller instruments, refining requirements, climate
model OSSEs,CLARREO related Venture Class proposals

* RS instrument proposed to NASA Venture Instrument AO
* ISS remains the least expensive option to fly CLARREO

LaRC/GSFC Meeting Nov 16, 2012 NASA internal Use Only -17



Consistency with Reanalyses?
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Increasing spatial scale >

 Window inter-annual variability reduces most rapidly with increasing scale

Simulations show the same behaviour but reduction in window is not as
rapid. Non-window variability exceeds broadband at all scales and seems
to show a faster rate of change with scale than observations

e Results in non-window variability becoming dominant at global scale
Window variability still dominates at global scale

« Spectrally, global inter-annual variability < 0.17 K, < 0.05 K across window
Variability < 0.15 K but up to 0.08 K within window



Interannual spectral variability (2008 to 2012)
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Window to BB CV ratio

Window to BB CV ratio
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But in principle...
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Consistency with Reanalyses?

> Input PCRTM
Parameters
(OD, PCs, cloud
parameters, etc.)

Y
Generate predictors by
> performing monochromatic
P C RT M RT calculations
Liu et al., 2006
Next Profile €
v

A Calculate PC scores
‘ T

Y= TaR™ ()

Annual 1979-2011 Average

EOF
Transformation
_ Near Channel Radiance?
R:Pmn - zy,—U,-
=1
A

Yes

X. Huang,
University of
Michigan

[ i ~ 10 million matched

Temperature at 2 meters (deg C)

oy IRIS-I.ike IASI spectra
FE-mA (in 10 days!)
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Ensure instruments are as consistent as possible

Spatial consistency:
average 16 IASI IFOV footprints

Direction of flight
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5 years of IASI L1c data: ~ 50 Th
~ 160 million spectra

Spectral consistency
IRIS

Pad each spectrum to 0-2000 cm-?

at original sampling interval
v

FT padded spectrum
%

FT and output at 0.1 cmt sampling
interval (~ 2.8 cm! resolution)

|ASI

Pad and truncate average spectra to 0-2000 cm?
at original sampling interval

%

FT, remove IASI apodisation function &
apply varying length Hamming window
v
FT output at 0.1 cmt sampling interval

(~ 2.8 cm resolution)
v

Apply remaining FOV correction factor
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