

Trade-Off Study for High Spectral, High Resolution Thermal Infrared Mission for Surface Applications

Ali Hussain⁽¹⁾, Dave Smith⁽¹⁾, Dan Peters⁽¹⁾, Gary Corlett⁽²⁾, Mike Perry⁽²⁾, Darren Ghent⁽²⁾
(1) RAL Space, STFC/UKRI, (2) University of Leicester

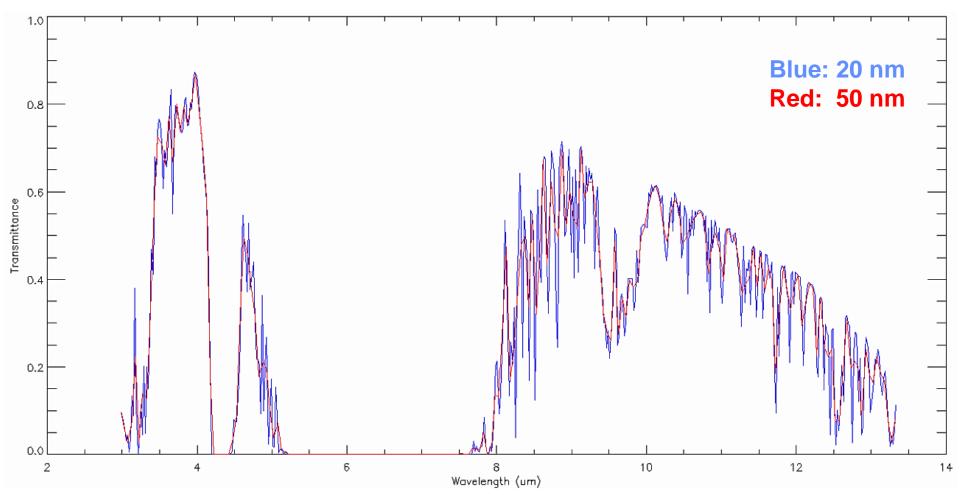
Background and Motivation

- Numerous scientific Earth observation applications require thermal infrared (TIR) imagery at high spatial (100m) and spectral (50nm) resolution over the range 3-14µm [1]
- Majority of operational TIR satellite sensors provide data at multiple spectral bands at spatial resolutions of 1km (e.g. SLSTR, VIIRS) or 100m resolution but limited spectral bands (e.g. Landsat TIRS and future ESA LSTM)
- We have performed a study, funded by CEOI, to explore the possibility of developing a TIR instrument with high spatial resolution and hyperspectral capability to meet the science goals, explore the limitations, and propose potential solutions

[1] HIRTII Study Scientific Requirements table, University of Leicester

ence & Technology

Potential applications


Domain	Application	Domain	Application
Volcanoes and Earthquakes	Detection of Earthquakes and Pre- eruptive volcanoes Hot spots and active lava flows Post eruptive studies on lava flows Eruption clouds and Tropospheric plumes		UHI: Surface temperature maps, Vegetation maps, Land cover/Land Use, Building Information, Air Quality Security and surveillance Industrial/power plant monitoring Air pollution Differentiate between urban and industrial zone
Fires	Detection of fires, potential coal fires, coal mine fires Estimation of burnt area, fire intensity and severity	Urbanisation	Detection of Oil spill and Plume Mapping malaria and/or cholera potential regions Arthropod vector ecology and disease distribution
Hydrology	Detection of water stress in crops and forests Detection of evapotranspiration in crops, river basins, and continents Prediction and monitoring of floods Mapping irrigated land		Mapping meningitis outbreak Asbestos-cement detection (non-accessible areas) Detection of minefields Trafficability (off-road soil moisture content)
	Cooling Degree Day estimations Growing Degree Day estimations and mapping	Surface Variability	Soil composition Identifying geothermal resources Mapping geothermal anomalies Mapping dynamic variability of surface temperature and emissivity

Spectral range and resolution

Gases: N2, O2, CO2, O3, H2O, CH4, N2O, CO, HOCI, HCN, COF2, H2O2, C2H2, C2H6, OCS

50nm: lowest spectral resolution to determine absorption features and retrieve surface properties

cience & Technology acilities Council

Instrument Design Drivers

Science drivers requirements

- Spectral resolution: ~50nm
- Spatial resolution: ~100m
- NEdT: ~200mK
- Repeat times: hourly-daily

Considerations: instrument

design trade-offs

- Detector performance
- Optics: telescope and spectrometer size
- Spectral selection
- Calibration

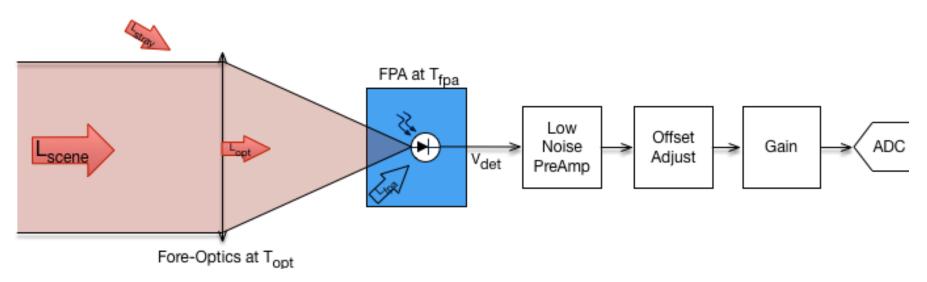
Operational High Resolution TIR Imagers

Satellite	Landsat 7 ETM+	Landsat 8 TIRS	ASTER (Terra)
Instrument	Cold Field Prime Focal Place Cryster per second Prime Focal Place Cryster per second Place Cryster per second Cryster per second Cryst		
Spectral band	10.4 -12.5	10.6-11.2	8.1-8.5
(µm)		11.5-12.5	8.5-8.8
			8.9-9.3
			10.3-10.9
			10.9-11.7
Resolution	60m	100m	90m
Swath width	185km	185km	60km
Detector,	HgCdTe (8),	QWIP (3),	HgCdTe (10x5),
NEDT	0.20K @ 300K,	0.4K @ 300K	0.3K @ 300K
	0.20K @ 320K	0.35K @ 320K	
		(0.3K @ 360K)	

Key points:

- Filter radiometers with limited spectral bands
- Limited repeat times due to narrow swath

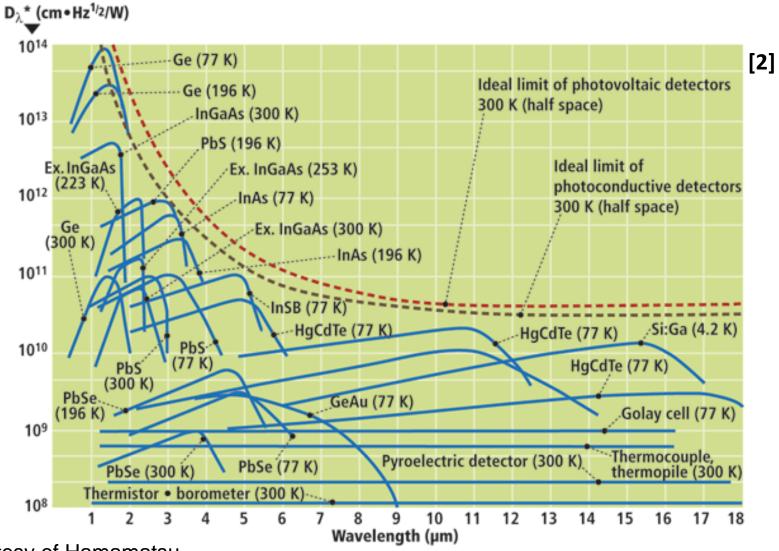
ECOSTRESS


- HYSPIRI prototype (on ISS 340km)
 - TIR spectral bands (µm):
 - 8.3, 8.8, 9.1, 10.5, 12.1,
- Resolution: 60m
- Swath width: 360km
- NEdT: 0.5K
- Repeat time: 5-day

Radiometric modelling

• To determine the feasibility of a hyperspectral imager, we start with the radiometric model

• Enables us to determine key instrument parameters: detector, optical aperture, instrument altitude, spectral resolution, spectral coverage, spatial resolution



ence & Technology

Detector Figure of Merit (D*)

[2] Courtesy of Hamamatsu

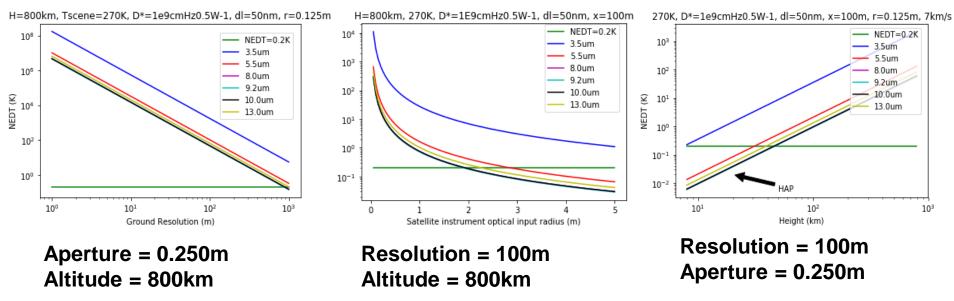
- Performance of detector is defined by D* (Wcm⁻¹Hz^{-1/2})
- Current commercially available detectors
 - LWIR (8-13µm)

ice & Technology

- MCT: D* ~5x10¹⁰ (LW cut off at 13μm)
- Microbolometers: D* ~2x10⁸
- MWIR (3-6µm)
 - MCT: D* ~7x10¹⁰
 - InSb: D* ~1x10¹¹
- Maximum array size: 1280x1024
- These parameters set the physical limits of the instrument performance

Radiometric modelling approach

- A simple radiometric model to assess the sensitivity of the instrument response to:
 - Optical aperture size
 - Altitude
 - Spatial resolution
 - Spectral resolution
- Assumptions:
 - D* is fixed for a microbolometer and an MCT
 - Reference scene temperature = 270K (typical mid point)


Trade-off parameters

Microbolometer (D*=1x10⁹ cmHz^{1/2}W⁻¹)

Ground Resolution

Optics Diameter

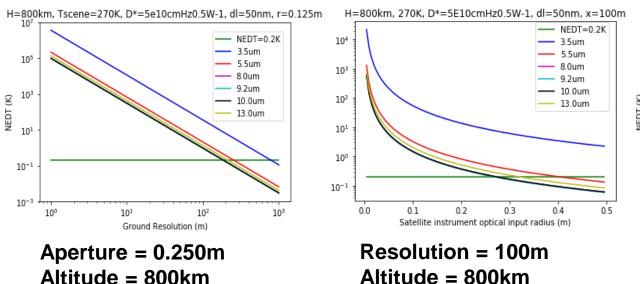
Altitude

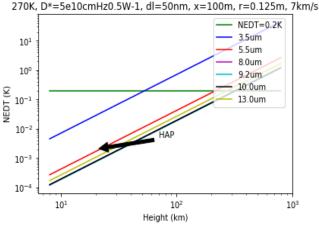
Outcomes:

Science & Technology Facilities Council

- Microbolometers in LEO can not achieve required NEdT
- Yes $\Delta\lambda$ =50nm, Δx =100m but optics diameter ≥3m
- HAPS (~22km) is an possibility

Trade-off parameters


Cooled MCT (D*=5x10¹⁰ cmHz^{1/2}W⁻¹)


Ground Resolution

Science & Technology Facilities Council

Optics Diameter

Altitude

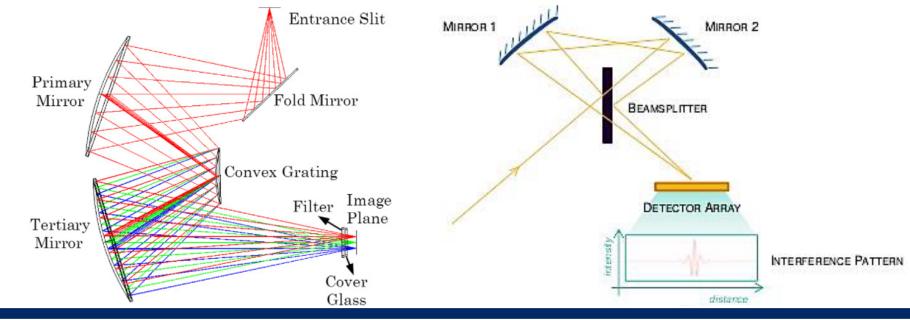
Resolution = 100m Aperture = 0.250m

Outcomes:

• $\Delta\lambda$ =50nm, Δx =100m are possible but optics diameter ≥0.5m

Spectral selection

- Spectral bandpass filters
 - Limited spectral coverage not hyperspectral
- Grating spectrometers
 - Hyperspectral possible grating design / spectral range
- Fourier Transform spectrometers
 - Moving mirror (Michelson type)
 - Static FTS
- Dispersive spectrometers
 - Susceptible to chromatic aberration, limited spectral range



Proposed spectrometer concepts

	Offner	microFTS
Principle	Reflective optics/grating	Static Fourier Transform (FT)
Throughput	Low (slit)	High (array limited)
Challenges	Multiple detector arrays for high spectral range/resolution	Resolution limited by detector pixel array and density
Binning spectral/spatial	Trade off spatial/spectral resolutions	Post processing FT trade off

Summary

- Many science drivers require high spectral and spatial resolutions
- **Existing instruments don't meet future requirements/specifications**
- Physical limitations of detector performance and trade-off parameters
- **Proposed TIR imaging spectrometer concepts**
 - HAPS: high ground resolution and normal optical input diameter
 - Split concept (MWIR/LWIR): orthogonal imaging spectrometers
 - Binning: sample at threshold values, bin spatial or spectral data

Wait!

Technology Roadmap

- 1. Trade off study between Offner and microFTS
 - Down select based on optical analysis
 - Identify key technology constraints
- 2. Develop breadboard instrument concept
 - Demonstrate performance in laboratory
 - Field testing
- 3. Prototype airborne instrument
 - Flight test UAV/airplane/HAP and compare results
- 4. Satellite instrument
 - Phase 0/A studies, Earth explorer or Copernicus missions

Thank you for your attention

