

DEFENCE AND SPACE

SPIDER (Ship Position and Detection Radar) Proof of Concept Campaign UK NEO Conference, Birmingham, 05/09/18

Background

- Inherent challenges of Maritime Surveillance increasing and predicted to accelerate due to expansion of maritime traffic, growing issues with illegal fishing, piracy and migration.
- Maritime Surveillance is traditionally performed using a fragmented, expensive and inefficient array of sensor networks managed by Maritime Authorities and, Defence and Security Agencies.
- Current systems still suffer from poor revisit time and latency for wide areas which are increasingly required.

Land-based Radars

Maritime Patrols SPIDER NEO Conference

Typical Maritime Surveillance Requirements

Re-visit Time	Threshold < 1hTarget: <15 min
Latency	• < 15 minutes
Ship size	Threshold: 25mTarget: 10-15m
Performance	 Prob. of detection > 0.9 Prob. False alarm < 10⁻⁶ Sea State <4-5

*These figures depend on global, regional or local coverage.

Air Patrols

EO Satellites

Opportunity: Airbus Zephyr

- Zephyr is a High Altitude Pseudo-Satellite (HAPS) running exclusively on solar power that:
 - Endures like a satellite;
 - Focusses like an aircraft and;
 - Is cheaper than both of them.
- Very brief Zephyr program status:
 - 3 Zephyr-S purchased by UK-MoD in production.
- Zephyr opens new market opportunities for permanent maritime surveillance at regional scale.

The challenge is to develop a radar sensor meeting the stringent SWaP, operational, and environmental constraints.

(*We like challenges.)

Typical Zephyr-S Requirements on Payload

Total Mass	< 5 kg
Total DC power	< 50 W (day avg.) < 200 W (peak)
Volume	< 0.15 L
Environmental	Temp & Pressure Stratos.
Data Link	BLOS < 1kbps (SATCOM)

3

SPIDER Zephyr-S Radar Payload

Payload Characteristics

- Total mass < 5kg
- Centre frequency: X-Band
- Bandwidth: up to 1200 MHz
- CW Operation: Chirp & Coded pulses
- Antenna size < 0.2 m x 0.2 m
- Beam Scanning capabilities for extended coverage
- Beyond Line-of-Sight Operation in Maritime Mode

Payload Datasheet

System Parameter	Maritime Mode	Stripmap SAR
Coverage	>40km	>40km
Product Swath	>40km	5km
Resolution	0.5m x 100 m	<1m x 1m
Data Rate*	1-2 bytes/ship	<30 MB/s
Duty Cycle	100%	<3%
Avg. Power	<40 W	<140 W
Integration Time	0.05-0.5 s	30-60 s
Operation mode	LOS & BLOS	LOS / DL
Performance	PD>0.9 PFA<10 ⁻⁶	NESZ<-20dB
N. of Sub-swaths	8	8

*Excludes data packaging information

SPIDER Proof-of-Concept Campaign

- SPIDER Concept was proposed to the UK CEOI within the 10th Earth Observation Technology Call.
- Proposal was approved for funding in April 2017 and campaign was completed in November 2017.
- CEOI Program with 50% Airbus DS co-funding.

Campaign Objectives:

- Design, Implementation, validation, and verification of a SPIDER PoCC demonstrator.
- Demonstration of SPIDER radar concept on an airplane ("controlled" environment).
- Demonstration of processing principle and radar operation for maritime surveillance.
- Zephyr's radar design with mostly same COTS components but without PCB integration.

From Radar Design to Flights in <10 months.

Scimitar G-BEZL Piper Navajo

Mission Rack

AIRBU

PoCC Instrument Definition

- System is operated in CW mode with FM and Coded modulations.
- Burst mode "imaging" of 0.37s duration with 240MHz and 485MHz bandwidth.
- System in active gimbal stabilised in pan and tilt.

Parameter	Value
Platform Height	1.7 – 3 km
Carrier Frequency	10.1 GHz
Bandwidth	< 485 MHz
Sampling Freq.	1440 MHz
Operation	Burst CW
Burst duration	0.37 s
Pulse Modulation	FM & Coded
Peak Tx Power	12.5 W
Noise Figure	2.2 dB
System Losses	5 dB
Antennas' Size*	7 x 7 cm
Resolution	< 2 x 2 m
Swath	> 3 km

*COTS WG16 Standard 15dBi Gain Horn

AIRBUS

Instrument Interfaces

Instrument Accommodation

Gimbal Motion:

Instrument Accommodation (2)

Scimitar G-BEZL Piper Navajo

Mission Rack

9

Campaign Definition

- SPIDER PoCC took place from 21-29 November 2017.
- 4 Flights in total, each of ~4h, 8-10 tracks each day.
- Test site: The Solent, near Portsmouth, UK.
- AIS data acquired as ground truth, also CR deployed.

Campaign Blog

Day	Comments
21 st	 Sywell Elevation: 45° / 60° SAR 225 MHz Coded 240 MHz Coded 480 MHz
22 nd	Bad day!
23 rd	 The Solent Elevation: 45° SAR 225 MHz Coded 240 MHz
28 th	 The Solent Elevation: 60° SAR 225 MHz Coded 240 MHz
29 th	 The Solent Elevation: 45° SAR 480 MHz Coded 240 MHz
	AIKBUS

EMC Problems

- During EMC test it was noticed that the radar was interfering with the airplane GPS navigation system when using coded signals (SAR was fine).
- Filter was moved after HPA to avoid interferers due to spectral regrowth in coded modulation.
- Unfortunately, cavity filter (not designed for high power) was leaking affecting system isolation and producing a **white stripe** in the SAR imagery.
- No other filters were available and lead time > 8 weeks so campaign went ahead anyway.

Ship Detection Results – Boresight 45°

12

SPIDER NEO Conference

AIRBUS

13

Ship Detection Results – Boresight 60°

Altitude: 2987 m Mode: Burst 225 MHz Incidence Angle: 47° – 76° Range resolution: 0.9 – 0.7 m Azimuth resolution: 2.1– 6.1 m Sea State 4: Moderate breeze

AIRBUS

Conclusions

- SPIDER prototype designed and developed in 2017 to demonstrate operational concept (but not optimised for mass & without on-board processing).
- SPIDER Proof-of-Concept Campaign successfully conducted in November 2017 with a conventional airplane at 3000m altitude.
- Campaign results confirmed expected ship detection and land imaging capabilities with a modified burst-mode SAR operation mode

Next Steps

- In order to prepare the system for Zephyr flights (available Q1 2020), the following steps required:
 - Integration of the RF components on dedicated PCB for mass and volume optimisation.
 - Manufacturing of bespoke lightweight antennas.
 - Development of on-board processor.
- In order to prepare for a OneWeb SPIDER payload, the following steps are required:
 - Development of front-end phased array network and W/G antenna.
 - Development of on-board processor
 - Back-end integration of RF Electronics (commonality with ZS).

SPIDER on Zephyr S

8 SPIDER SAT on Vega-C

Upper view

SPIDER on OneWeb

Any questions? yvonne.munro@airbus.com

jose.marquez-martinez@airbus.com

