

Rob Scott - CEOI-ST Chris Brunskill - Satellite Applications Catapult

The Challenge (I)

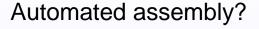
- Satellite manufacture and access to space both remain costly, time consuming, and the space industry is predominantly a bespoke industry
- This remains true despite:
 - Innovation at SSTL and elsewhere
 - SSTL can build a spacecraft in ~2 years, but shorter times and lower costs are needed for commercial customers.
 - Advances in manufacturability in the telecomms satellite industry
 - Comsats are normally ready to fly in ~2 years, but customers want them on orbit as soon as possible, for the lowest price
- However scientific payloads and missions can take many years
 - Times of 10, 15 and even 20 years from concept to flight are not uncommon

The Challenge (II)

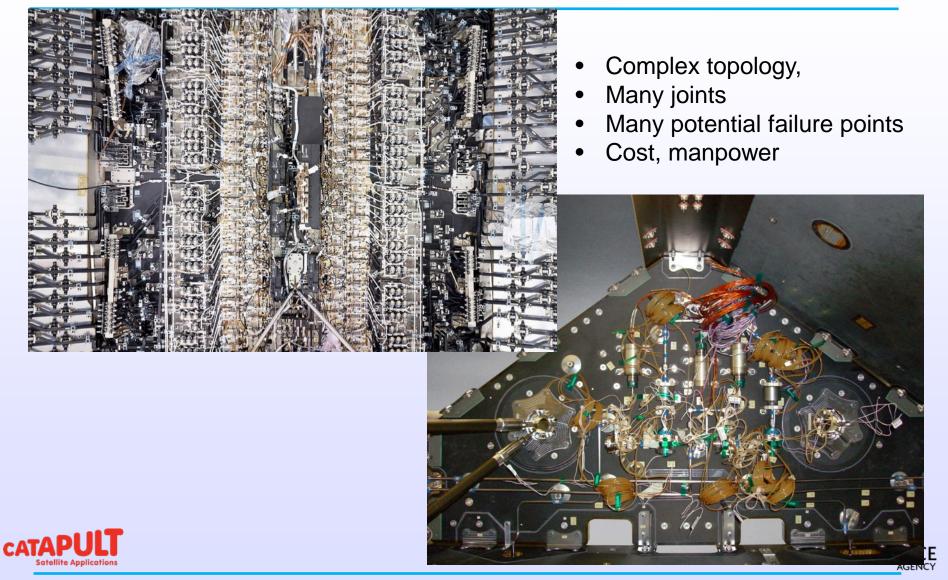
- This is particularly challenging for commercial enterprises
 - If a commercial services are to be profitable, or at least sustainable, then costs of the space segment must be brought to the absolute minimum.
 - In addition, the time to flight must be as short as possible in order to seize the commercial initiative.
- Advanced manufacturing techniques can help potentially
 - So what are we doing, and how well are we doing?
 - What needs to happen to add momentum to these efforts?
 - What are we doing in CEOI-ST?
 - What is ESA doing?
 - What can the High Value Manufacturing Catapult bring to the UK space community?

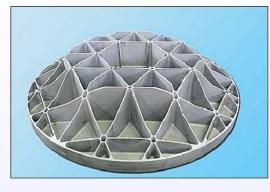
Additive Layer Techniques

- ALM is already a massive subject & market
 - Tends to dominate discussions of Advanced Manufacturing
 - Large peripheral industry growing regarding design, postprocessing, materials, qualification and standardisation
- There are other techniques however
 - Robotic assembly
 - New techniques in machining and conventional engineering
- Hence this talk will simply set the scene for the day by posing questions rather than attempting to outline answers



Can we ever approach the methodology of the automotive industry?


Standardised subsystems and parts?

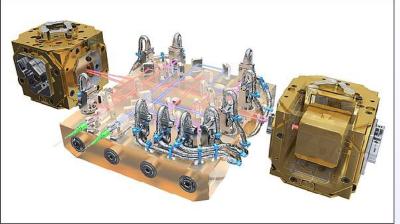

Complexity – pipes & waveguides

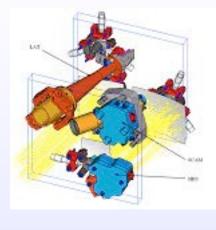
Complexity - structures

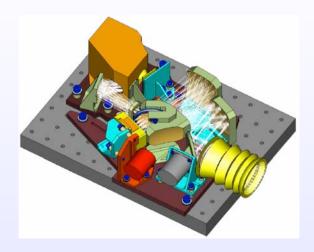
Lightweight mirrors

Complex structures

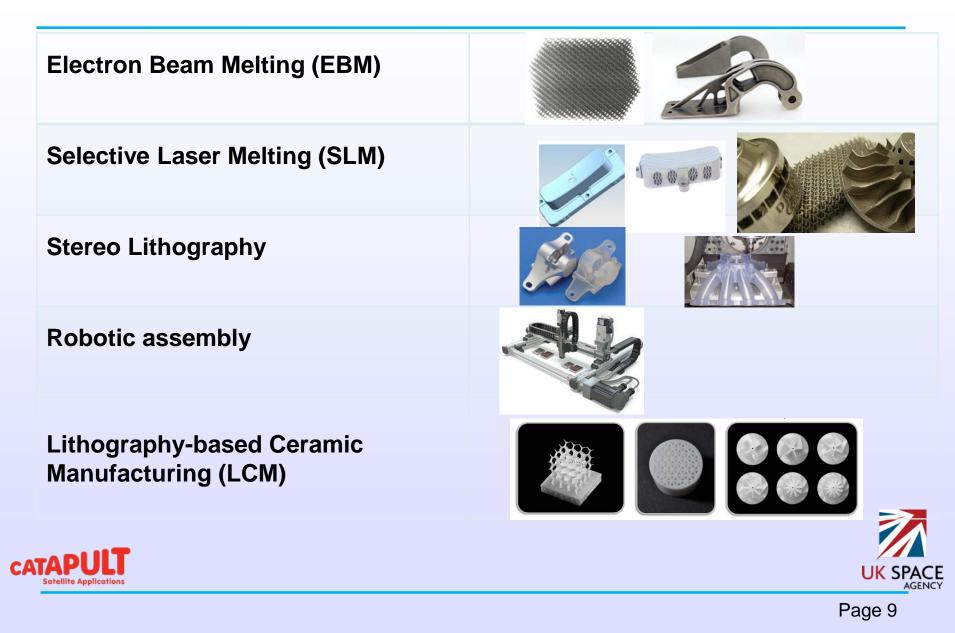
Tankage


etc


Page 7

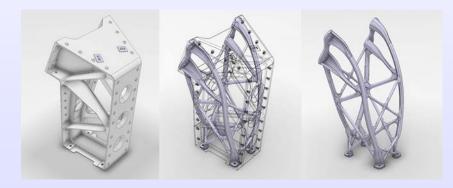

Complexity - Instrumentation

High precision optics


'Highly Integrated Payload Suites'

Page 8

Some AM Techniques


CAD techniques

- CAD techniques
 - There are some significant limitations in current generation of CAD SW for 3D printing

 Structural optimisation with genetic algorithms etc.

- Metals
 - Metals available are suitable for fabrication
 - But are these materials suitable for space applications?
 - What materials are in the pipeline?
- Re-use of materials
 - how many times can unfused powder be reused, and how do we quantify this for process qualification?

Advantages

- Potential for efficiency savings in manufacturing step
 - Elimination (or great reduction) of waste material
 - From CAD to fabrication via universal machines
 - Light-weighting joint-free closed honeycomb structures
 - Repeatability in principle
 - Potentially time saving
- Fabrication of complex shapes containing voids, without the need for jointing of multiple segments.
- New configurations not possible by traditional machining
- Rapid prototyping using polymers, prior to metal printing
- However what is the quantitative gain of AM over traditional techniques?

- What is the gain, once drawbacks are taken into account?

Issues

- Surface finish
 - Metal parts often have loose particles and a finish resembling a nail file.
 - Need to ream pipes and ducting, and treat surfaces with abrasives, and/or heat and/or chemicals
- Materials
 - Voids in bulk printed material
 - Crystal structure need for heat treatment
 - Heat soak for bulk stress removal
 - Hot isostatic pressing (HIP) crystal regrowth
 - Material recycling
 - Material suitability for space need for specific materials e.g. noble metals
- Practical issues and 'black magic'
 - Orientation during build, structural support slumping
 - Community (users plus machinery vendors) still learning
- CAD issues
 - CAD software unable to represent complex shapes, and present coherent files to ALM machines
 - Need new generation of CAD which is fully aware of Additive techniques?

Repeatability and Qualification

- Ideally one should not be locked into a specific AM foundry
 - Process and material qualification
 - Confidence needed in parts produced at different locations to same specification and CAD file
- Some way to go for full space qualification of AMbuilt subsystems
 - Some components easier to qualify than others?
- Need for national initiative to mobilise and enable UK community?

Known user demands

- Frequent user requests from Additive Manufacturing
 - Increased resolution
 - Improved surface quality
 - More materials
 - Process control/repeatability
 - Design guidelines
 - Standardisation
 - Any more from UK?

Breakout questions

- Q1: What are the emerging manufacturing challenges for commercial and institutional space?
- Q2: What are the burning issues arising from the use of Advanced Manufacturing (surface finish, process repeatability, space qualification)?
- Q3: How can CEOI-ST/SAC/HVMC and UKSA help consortia both exploit new manufacturing techniques, whilst addressing repeatability, quality and space qualification challenges?
- Q4: What are the next steps for all? (e.g. visits to advanced manufacturing centres, future workshops, themed project calls etc., incorporation into national strategy?

