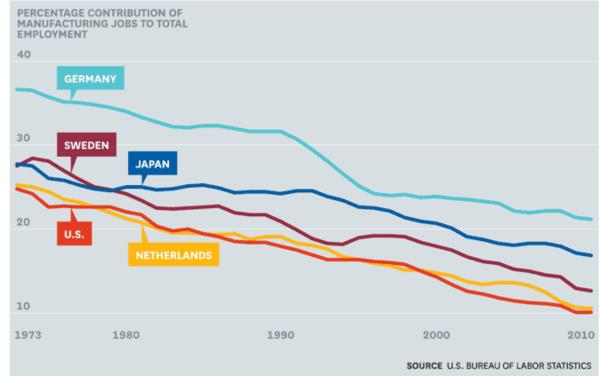


Additive and Advanced Manufacturing for Space Technology

Mikko Nikulainen Head of the Components Technology and Space Materials Division

Contact Details: <u>mikko.nikulainen@esa.int/</u> www.esa.int tommaso.ghidini@esa.int European Space Agency

AM: Enabling Technology for Future Space Missions



Enabling Industry to maximise benefits of the technology requires:

Reach confidence and quality required for space use Change the way we think/work today

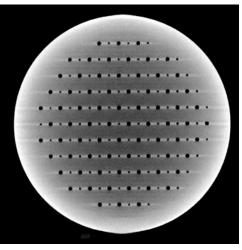
Manufacturing Technology in Europe

- Due to a number of reasons manufacturing within Europe has been in decline since the 1990's
- Outsourcing of manufacturing
- > The need for cost reduction
- Technology is decentralised to overseas suppliers
- This has resulted in certain competencies being permanently lost from Europe in general, not only Space

Additive Manufacturing (AM) at ESA

- Challenges for Space Materials and Processes:
- 1. Low Mass
- 2. Small Production Series
- 3. Very High Reliability
- 4. Limited Manufacturing Processes
- Why ALM?:
 - Additive Layer Manufacturing is well fitted to Space hardware => very small series.

5.

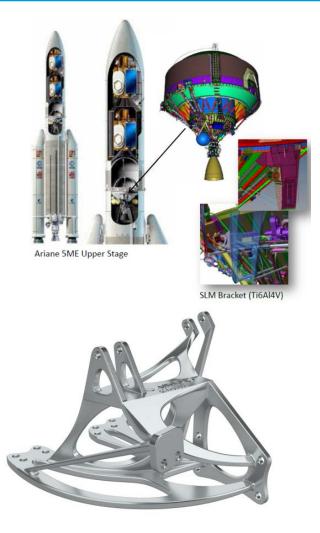

Small Geometries

6. Very High Performances

7. Challenging Material Procurement

- Applied to many materials => metals, polymers, composites, ceramics for space but also food (for astronauts), living cells and organs (for telemedicine).
- 3. Dimensions range from few micrometers to meters.
- Gains in performances with 2 digits => mass saving 40 to 90%, lead time reduced by weeks, suppress complex assemblies and controls.
- 5. Environmentally friendly => excess material is re-used instead of being down-graded through re-cycling.
- 6. Could be used for in-orbit manufacturing .

Several developments are currently running under ESA funding including RF hardware, antennas components, propulsion, thermal management and structures


AM for Launchers

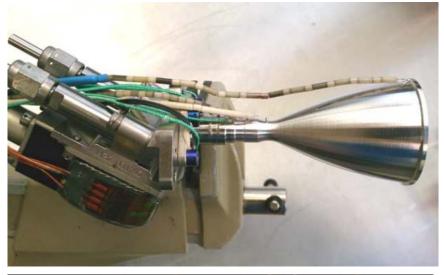
ISCAR bracket Airbus

- Upper stage Ti-6AI-4V bracket
- Market opportunities: Ariane 5ME/ Ariane 6
- Result in 20-25 brackets / launcher
- > **30 %** mass savings
- Verification approach: topology optimisation in consideration of fracture control
- Ongoing FLPP project

European Space Agency

A Major Achievement

World 's first 3D printed platinum combustion chamber for space applications !!!


Successfully Hot Firing Campaign <u>5th</u> of May, 2015:

- 1,1 hrs firing time
- 618 ignitions
- 26 thermal cycles
- with a 32 min longest single burn
- highest throat temperature of 1253°C was reached

ESA UNCLASSIFIED - For Official Use

1. Design challenges:

- Current design tools do not allow taking full benefit from AM capabilities
 - Design tools do not include AM specific features
 - Design tools not compatible with AM machine programmes
 - Design rules for AM not fully established

2. Manufacturing challenges:

- Raw material procurement not under full control => high impact on part manufactured
 - Change in powder characteristics
 - Unclear traceability of powders, unclear powder procurement
 - Develop new materials specifically for AM processing
- Manufacturing process stability
 - Two machines from same manufacturer produce slightly different output
 - Process monitoring
 - Understanding of changes of process parameters impact on final product

- **3**. (Space) Qualification / validation challenges:
 - Change of paradigm: classical qualification methods (at Product level) do not apply to AM made parts
 - Material evaluation samples not always representative of the part
 - Materials allowables to be defined
 - Process verification methodologies (NDI) to be established and qualified
 - PA requirements to be established
 - Capability approvals are necessary in the future!
- 4. Standardisation challenges:
 - AM dedicated standards not fully established yet
 - AM dedicated ECSS to be issued

ALL of the ABOVE IS ADDRESSED IN ESA R&D/ECSS ACTIVITIES

Status of the AM ECSS Proposal

- 1. <u>AIM G of the Roadmap</u>: Develop the required normative framework for AM made hardware (ECSS)
- 2. Motivation:
 - An ECSS standard is required which shall establish the processing and quality assurance requirements for space parts produced by Additive Manufacturing
 - Profiting of existing international standards (e.g. ISO, ASTM) for AM
- 3. Status:
 - In agreement with the ECSS TA a WG is established with the following objectives:
 - Map the current state of the art w. r. t. AM standardization (already performed)
 - Establish gaps and needs w. r. t. \space standardization
 - Define the work plan for the AM ECSS
 - ToR of the WG in preparation → Kicked-off

ASTM F42

ISO/TC 261 European Space Agency

European Harmonisation <u>Roadmap</u> on Additive Manufacturing for Space

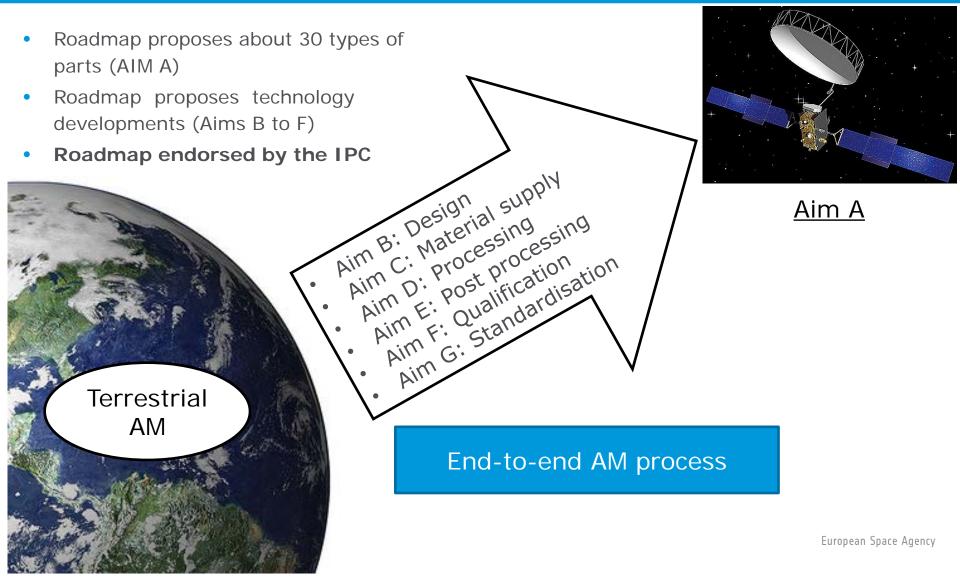
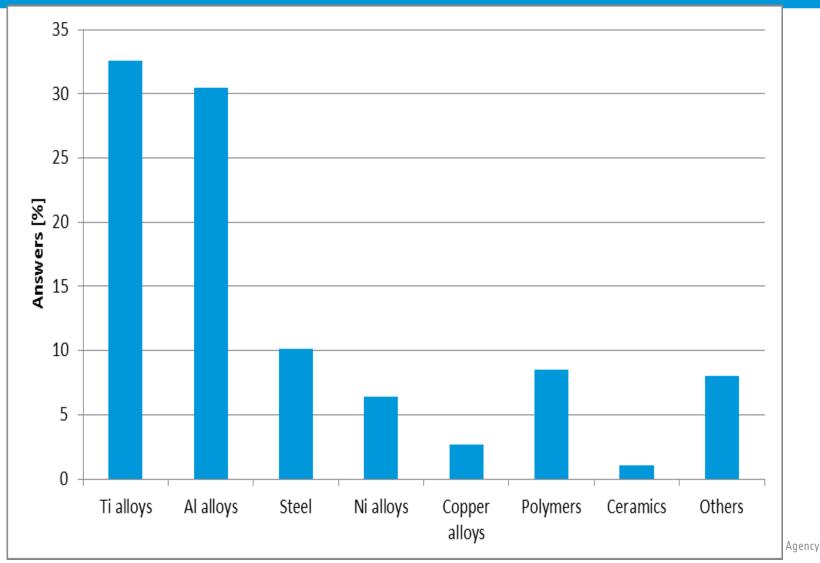
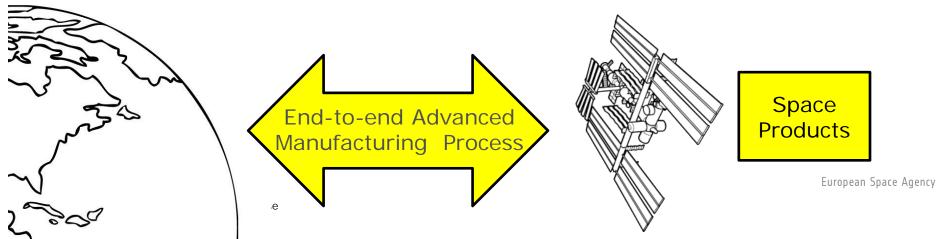



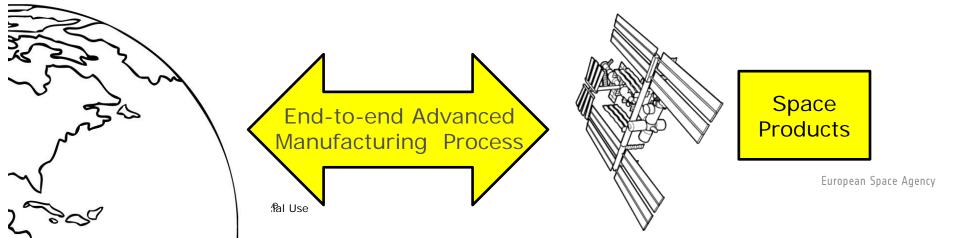
Image source: dragoart.com

European Harmonisation <u>Roadmap</u> on Additive Manufacturing for Space



ESA UNCLASSIFIED – For Official Use

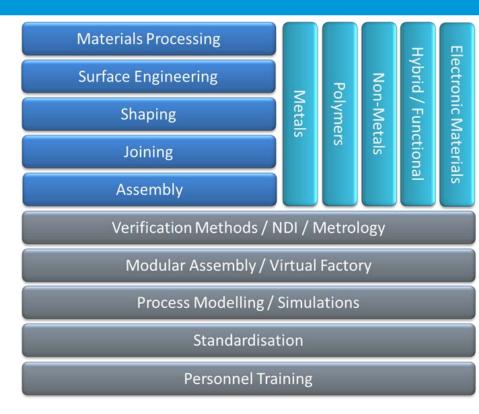
Advanced Manufacturing ESA Cross Cutting Initiative


- Advanced Manufacturing (AM) cross cutting initiative has the following objectives:
 - Identify and implement new manufacturing technologies for space applications enabling:
 - ✓ Design freedom
 - ✓ Performance improvement
 - ✓ Costs reduction
 - ✓ Lead time reduction (from concept to manufacturing)
 - To create new high performance Space products by actively reducing the limitations imposed by the traditional manufacturing processes/concepts

Advanced Manufacturing ESA Cross Cutting Initiative (2)

- Foster multi-sectorial cross-fertilization, facilitating spin-in / spin-out opportunities across different high-end technology and industrial domains and infrastructure
- Take advantage of other Programs supported by the EU (AMAZE, DEPLOYTEC, ThermoMag, etc.)
- Promote creation and dissemination of design and verification / qualification
 / standardization methodologies maturing creating the market and its uptake
- Maximize European Space industry competitiveness

Programme Structure


The first step is to identify

- the manufacturing processes (Dark Blue)
- the material types/ categories (Light Blue)
- Cross cutting disciplines which apply (Grey)

Select and prioritise the required advanced manufacturing technologies

Group similar activities and TRL levels

- Basic Research and prep activities (TRL 0-3)
 - Funded via GSP and TRP
- Main technology levels (TRL 3-7)
 - Funded via GSTP, Programme specific technology programmes, end user missions
- Qualification, verification and standards (TRL 4-8)

GSTP-6 Element 1 Potential Activities Advanced Manufacturing

GSTP-6 Reference	Title	Budget(K€)
	Materials Processing	
G61A-001QT	Low Cost Manufacturing of Engineering Ceramic Materials for Space Applications	400
G61A-002MS	3D Weaving processes for realisation of near net shaped hardware	500
G61A-003QT	Extended pot life resins for out of autoclave processing for large and complex part	600
G61A-004QT	Novel Low temperature curing resins for enhanced out of autoclave processing for large and complex space composites structure	1,200
G61A-005MS	Integrated Optical Fibres in Launcher and Spacecraft Composite Structures	500
G61A-006QT	Powder Metallurgy Based Materials for High Wear Resistance, High Hardness and High Temperature	600
G61A-007MS	Manufacturing of Interfaces for Thermo-Plastic Structures	400
	Surface Engineering	
G61A-008QT	Low cost/low temperature functional ceramic coating	500
	Shaping	
G61A-009MS	3D Honeycomb for curved structure manufacturing	600
G61A-010MS	Lattice Structures for Launchers and Spacecraft Produced with Automatic CFRP Processes	900
G61A-011QT	Advanced Forming Technologies for Complex Shapes	1,500
G61A-018QT	Additive Manufacturing Powder Material Supply Chain: Verification and Validation	1,000
G61A-019QT	Advanced aluminium alloys tailored for Additive Manufacturing space applications, targeting high end structural spacecraft parts	900
G61A-020QT	Development of large 3D printed structures: tank shells joined by FSW for ultimate cost reduction	2,500
G61A-021QT	Primary Structures made by Additive Manufacturing	1,200

More information: <u>www.emits.esa.int</u> => news

G61A-022QT	Enhanced contamination control for Additive Manufacturing	500
G61A-023QT	Development of a manufacturing process for large polymer structures for	
	spacecraft applications: high strength electrical and/or thermally	
	conductive polymers for Additive Manufacturing	700
G61A-024QT	Integrated recycling and manufacturing process for on planet	
	manufacturing using polymers materials	700
G61A-025MS	Development of Design Methods for AM including CAD Design / FEM	
	analysis / Manufacturing features	900
G61A-026MP	Additive Manufacture of In-space Engine chambers	2,000
G61A-027MS	Development of embedded thermal functions in structural parts using 3D	
	printing	900
G61A-028QT	Development of a gradient sized mesh for cryocooler by Additive	
	Manufacturing	1,000
G61A- 029ET	Development of one single part integrating waveguide filter, bends,	
	couplers, supporting structures made by Additive Manufacturing -	1,000
G61A-031MM	Development of thermally ultra-high stable compact grating spectrometer	
	mirrors via Additive Manufacturing	500
G61A-032MM	Development of low areal density Aluminium alloy mirrors using Additive	
	Manufacturing	400
G61A-033MS	Development of a Compliant Mechanism Based on Additive Manufacturing	500
G61A-034MS	Development of shock absorbing protection made of crushable materials	
	(lattice / cellular structure) using Additive Manufacturing	600
G61A-035ET	Evaluation and consolidation of Additive Manufacturing processes and	
	materials for the manufacturing of RF hardware	1,000
	Joining	
G61A-012QT	Dissimilar transition joints for Aluminium demisable structures	400
G61A-013QT	Surface Nano-Texturing of Metals for Adhesive Bonding Improvement in	600
- •	Metal/CFRP and Metal/Metal Structural Joining.	
	Assembly	
G61A-014MS	Integral Manufacturing of Full CFRP Sandwich Structures for Optical Benches	700
G61A-015MS	Manufacturing of Large Friction Stir Welded Structures for Satellites and Launchers Applications	1,200
G61A-016QT	Rigid-flex PCB interconnections	900
G61A-017QT	High Density PCB assemblies	1,800
	Total	29,600

Summary and Next steps – Additive Manufacturing

- Additive Manufacturing is considered a potential game changer and enabling technology for future space missions
- However, AM should not be seen as a "global" solution
- **However**, challenges exist:
 - 1. Design Challenges
 - 2. Manufacturing Challenges
 - 3. Qualification/Validation/Standardization Challenges
- ESA has proposed a strategic roadmap in order to address and solve the presented challenges with a harmonized approach, avoiding distracting European resources and efforts and avoiding the "mushrooming effect"
- The proposed Roadmap collates the most important activities required to allow End-Users develop **high performances parts while saving on mass, cost and lead-time**
- All proposed activities will aim at establishing Additive Manufacturing capabilities through manufacturing of breadboards / demonstrators endorsed by the End-Users
- AM ECSS WG kicked-off in Q1 2016
- Additive Manufacturing is one of the building blocks of a larger program launched by ESA → Advanced Manufacturing for Space Applications

