

Science & Technology Facilities Council

Additive Manufacturing at RAL

A R R R R R R R R R R

Mike Curtis-Rouse, STFC AM & Autonomy Lead

11 February 2016

Advanced and Additive Manufacturing Facility

- Co-located with Metrology facility
- ► EOS M280 FDR upgrade to M290 in Q1 2016
- Concept Laser MLab R
- Stratasys Objet 30 Pro
- Fortis 450 Ultem 9085 etc
- Full characterisation
- Simulation and modelling development
- Joint development with ISIS Neutron Source
 - AAMF focuses on the development of predominantly laser powder bed processes to support a variety of programmes with an emphasis on spacecraft, cryogenics and embedded systems.

Experimental Manufacture

Testing performance including cracking, fractures, stress, lack of fusion

Parameter development

- SS316 process development
- Focus on material properties
- Refractory metal development

Freeform Mirror design

- Manufactured in plastic
- Desired surface finish of <100nm</p>
- Complex surfaces achievable with associate benefits from equal thermal expansion, shorter integration...
- Plated with 100µm Au
- ➢ Surface roughness <5µm</p>

Residual Stress

Residual Stress affects:

- Thermal contraction after solidification
- Phase change during cooling e.g. ferritic steels, titanium
- Leads to distortion of component geometry
- Fatigue performance in service

Neutron NDT offers:

- Mapping of residual stresses in metallic AM
- Suitable for aerospace alloys e.g. Ti6Al4V
- Good penetration of dense alloys
- Desirable for repeatability and validation testing.
- Very high fidelity data sets

ISIS Neutron Spallation Source

Insitu SLM Build

- Insitu measurement of build process
- Realizer SLM 100 in neutron diffraction instrument
- Measurement of component build during sintering
- Match temporal duration build vs. acquisition
- Improvement understanding of process
- > Optimisation of build parameters

Simulation of Residual Stress

Avoiding this by...

...modelling this

Simulation of Residual Stress

Experiment Sample

FEM Stress calculation

Stress based optimized support structure

Support structure with non-uniform thickness

Support structure with non-uniform spacing

E	-	-	-	-	=											_	=	-
	H		-	-		_						_					+	\pm
Γ				_														T
F																		t
H	-	Н	Η	-		-	H	Η		1	-		Η	Η	Н	H	+	+
			_	_	_	_		_				_	_		_			Ŧ
				-								_						t
																	-	Ŧ
E				-			E									-		-

Full integration

- Mass spectrometer vacuum chamber
- Integration of eight components into one assembly
- Reduction in joints, seams, mass and volume
- Inclusion of vacuum and optical windows.
- Manufactured in plastic with view to using Ceramic binding as final process

Embedded functionality

Embedded functionality:

- Heat pipes
- Antennas / RF circuits
- Ablation protection
- Wiring harnesses
- Sensors

Encapsulated components via RP technology

Future direction

- Vary machine parameters during build to optimise final stress state
- Predict and include distortion effect in build geometry
- > Exploit beneficial residual stress and texture, rather than minimising
- Alloys designed for additive manufacturing

mike.curtis-rouse@stfc.ac.uk