

Advanced Instrumentation for Micro-Vibration Characterization of Satellite Components

Dan Veal

Thursday 11 February 2016

Summary


- Vibration challenges
 - AM production process
 - Performance verification of AM parts
- Applications
- NPL project: Measuring ALM components

NPL in brief

We are UK's national standards laboratory

- Founded in **1900**
- World leading National Measurement Institute
- ~800 staff, from over 150 different nationalities; 550+ specialists
- State-of-the-art laboratory facilities
- The heart of the UK's National Measurement System to support business and society
- Large capacity for **bespoke Instrumentation**
 - Sentinel IV, mechanical test centre at ESTEC

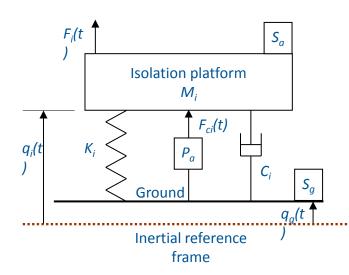
European Space Agency: Their need 5 years ago

Solar Array Drive

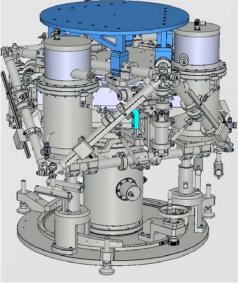
© RUAG

National Measurement System

Orion multipurpose crew vehicle © NASA


ESA vibration measurement test requirements

- Mass: 2-50 kg
- Payload Power: 0.5-20 kW
- Size: Up to (0.4 m)³
- Measure Interface Forces 10 µN to 0.1 N
 For reference: Weight of 1 eyelash = 0.5 µN
- Equivalent accelerations for 50 kg payload:
 - 20 ng to 0.2 mg


Technologies developed to meet stringent test requirements (1/2)

• Generic active vibration isolation system

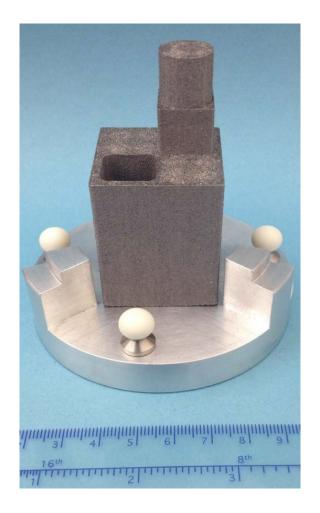
National Measurement System

Technologies developed to meet stringent test requirements (2/2) 60 cm top plate

Measurement stage

6 DoF measurement platform

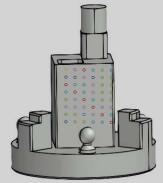
Active isolation _____ stage - ultra-quiet background



Applications vibration isolation facilities/technology for AM and Space

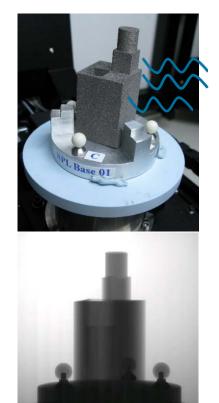
- Improve operation of advanced manufacturing facilities
 - Active Isolation retrofit for:
 - Semiconductor industry
 - Advanced machining
- Verify performance of AM parts/mechanisms/instruments
 - 6 DoF facility as test bed for performance
 - Performance of optical instruments with AM parts under different vibration backgrounds
 - Fine differences in vibration signature of AM mechanisms versus traditional (unwanted vibration from surface contact, etc)

UK funded collaborative research: Design of an NPL test artefact with ALM


 Parallel flat side faces

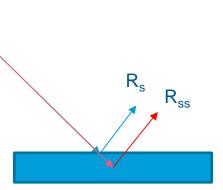
- Common shapes (cubes, cylinders)
- Internal and external features
- Reference tooling balls

Measured with three different measurement techniques: Tactile (CMM), Optical and XCT



Tactile National Measurement System

Optical



XCT

Differences and issues between techniques

XCT

Optical

 Up to 300 um systematic error between techniques, even though STD ~10s of um

 Take home message: be very careful when trusting measurements of ALM parts...

Surfaces – all with Ra of 0.8 um

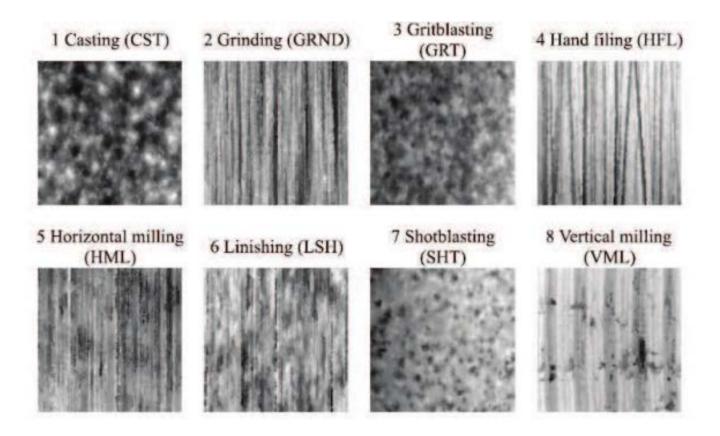


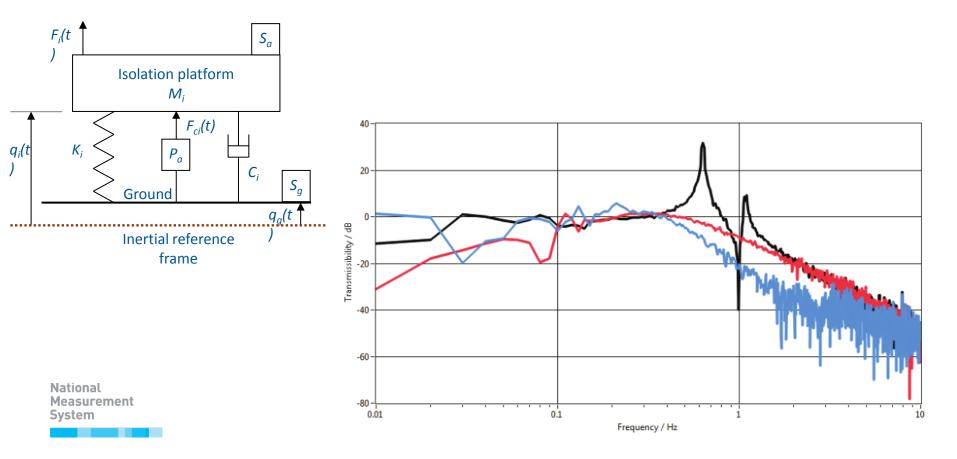
Figure 3. Samples of machined surfaces, all with 0.8 µm Ra (Josso, et al., 2000)

National Measurement System

Thank you

dan.veal@npl.co.uk

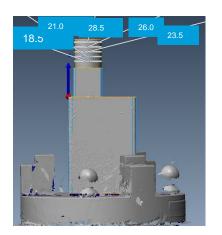
National Measurement System


Backup slides

National Measurement System

Technologies developed to meet stringent test requirements (1/2)

• Generic active vibration isolation system


Dimensional measurements - Summary

C B A

Item	СММ	CMM- Optical	CMM- XCT	
A(Dia)	9.991	0.079	0.005	
B(Dia)	9.991	0.188	0.006	
C(Dia)	9.992	0.064	0.006	
A-B	68.381	-0.063	0.014	
A-C	50.769	-0.026	0.013	
B-C	57.820	-0.025	0.008	

- Comparison of data from CMM, XCT and optical.
- Sphere diameter and distance
- Circle diameters and standard deviation (Std)

All units are in mm

Height	СММ	Std	CMM - Optical	Std	CMM - XCT	Std
18.5	14.070	0.037	0.206	0.030	0.165	0.012
21.0	14.051	0.036	0.232	0.029	0.177	0.012
23.5	14.066	0.043	0.246	0.030	0.192	0.013
26.0	14.052	0.040	0.202	0.035	0.163	0.012
28.5	14.059	0.034	0.201	0.034	0.177	0.013