

<u>Airborne GeoSciences</u>

Science and Engineering

John Moncreiff, Caroline Nichol, Tom Wade

SAGES

at The University of Edinburgh

Introduction

Objectives

- 1. Airborne GeoSciences Facility (UoE) Overview
- 2. Small Manned and Unmanned Platforms Strengths & Limitations

Science and Engineering

at The University of Edinburgh

Airborne GeoSciences Facility, UoE

NERC

Airborne GeoSciences Facility, UoE

Mission Statement

Airborne GeoSciences exists to conduct and support research into our physical environment using advanced airborne sensing techniques.

Science and Engineering

at The University of Edinburgh

Airborne GeoSciences Facility, UoE

NERC SCIENCE OF THE ENVIRONMENT

Airborne GeoSciences Facility, UoE

What we actually do:

- Sensor System Development & Integration (manned aircraft /unmanned aircraft system)
- Research & survey flight operations (manned/unmanned aircraft system)
- Training & equipment loan for independent UAS operations

Science and Engineering

at The University of Edinburgh

Airborne GeoSciences Facility, UoE

NERC SCIENCE OF THE ENVIRONMENT

Airborne GeoSciences Facility, UoE

NERC Recognition & User Access

- Recognised status 'kite mark' of NERC approval, but no core funding
- 'Pay-as-you-go' access available (at Steering Group discretion)
- Collaborative research much preferred

Science and Engineering

at The University of Edinburgh

Airborne GeoSciences Facility, UoE

NERC SCIENCE OF THE ENVIRONMENT

SAGES

Aircraft

- 1. Conventional Platform Diamond ECO Dimona
- 2. Remotely Piloted Aircraft Systems (RPAS, also known as UAVs, or 'Drones') for research & training
 - Fixed Wing
 - Multi-rotor

Science and Engineering

<u>Airborne GeoSciences</u>

at The University of Edinburgh

Airborne GeoSciences Facility, UoE

Instrumentation

1. Diamond ECO Dimona:

- Meteorology
- Chemistry
- Hyperspectral Imaging
- Laser range-finding
- Ortho-photography
- Core support & nav. systems
- 2. **RPAS**:
 - Ortho-photography
 - Laser range-finding

SAGES

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Small Manned Aircraft

Small Manned Aircraft

Science and Engineering

at The University of Edinburgh

GeoSciences

Airborne

The University of Edinburgh

Small Manned Aircraft

Diamond HK-36 TTC ECO-Dimona

- 'Touring Motor Glider' with certified infrastructure for additional measuring equipment
- Dedicated payload areas and 28 VDC electrical system (~900 W)
- Scientific payload max. 150 kg
- Crew Pilot/observer or single pilot
- Endurance 2.5 5.5 hrs
- ~ 12 kg fuel / hour

Science and Engineering

at The University of Edinburgh

Small Manned Aircraft

ECO Dimona Payload Areas

SAGES

Rear Cabin (30 kg

Under-wing pods (55 kg)

Science and Engineering

at The University of Edinburgh

Small Manned Aircraft

Small Manned Aircraft – The Niche

Low, Slow

- Boundary layer processes, especially direct measurement of land-atmosphere exchange of heat, water & trace gases
- Very high resolution remote sensing

Intermediate spatial scales

On demand

Science and Engineering

at The University of Edinburgh

Small Manned Aircraft

Small Manned Aircraft – Other Strengths

Low Operating & Fixed Costs

- Sensor development and trials
- Protracted deployments e.g. several weeks or months at fieldsite, seasonal or event driven science ('sit-and-wait')

Very Low environmental impact Small Crew

Science and Engineering

at The University of Edinburgh

SAGES

Small Manned Aircraft

SCIENCE OF THE ENVIRONMENT

Small Manned Aircraft – Key Challenges

NERC

- Restricted weight, space, power, balance
- Challenging sensor environment:
 - T, P, humidity
 - Vibration
 - Contamination
 - Limited in-flight access
 - Installations need certification!
- Practical operational limitations
- Human resources, skills & core funding

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

SAGES

Remotely Piloted Aircraft Systems

Small Unmanned Aircraft Systems (SUAS)

(Remotely Piloted Aircraft Systems (RPAS))

Science and Engineering

at The University of Edinburgh

SAGES

Remotely Piloted Aircraft Systems

UK RPAS Classification (UK CAA CAP722)

1. UAS (> 150 kg)

2. Light UAS (> 20 kg, <= 150kg)

3. Small UAS (<= 20kg)

Science and Engineering

at The University of Edinburgh

Remotely Piloted Aircraft Systems

NERC SCIENCE OF THE ENVIRONMENT

Bormatec UAV Explorer

- Main fixed wing RPAS survey platforms
- Payload ~ 2.5 kg
- Endurance ~ 45 mins (+)
- Highly / fully automated flight
- 2 aircraft for redundancy / fast turn around

SAGES

Science and Engineering

at The University of Edinburgh

Remotely Piloted Aircraft Systems

NERC SCIENCE OF THE ENVIRONMENT

Tarot 680 Pro Hexacopter

- Multi-rotor training / survey platform
- Payload ~ 1.2 kg
- Endurance ~ 15 mins
- Highly / fully automated flight
- Very useful where space is restricted, but spatial coverage is compromised
- Good for radiometric work where hovering allows longer integration times

SAGES

Science and Engineering

at The University of Edinburgh

Remotely Piloted Aircraft Systems

Small RPAS - Strengths

- Potentially **higher resolution** photoimagery and DTM (1-2 cm)
- More economic for **small spatial scales**, high temporal frequency measurements
- Suitable for **independent operation in remote places**
- Small systems **don't need certification or Pilot Qualification** (normally)
- 'Dull / Dirty / Dangerous' operations

Science and Engineering

at The University of Edinburgh

SAGES

Remotely Piloted Aircraft Systems

Small RPAS - Limitations

- VERY limited weight, space, power
- Questionable reliability risk to high value sensors?
- Small spatial scales Primarily due regulations on 'Visual Line of Sight'
- Normally not within or very near to urban areas; or very close to people/structures etc.

SAGES

Science and Engineering

at The University of Edinburgh

Remotely Piloted Aircraft Systems

NERC SCIENCE OF THE ENVIRONMENT

Visual Line Of Sight (VLOS)

SAGES

- Normally Max. 400 feet above ground level (CAP722, but see also ANO Article 166(4 c)
- Within the visual range of the Remote Pilot, to a maximum range of 500 metres (whichever is less) (CAP722)

Science and Engineering

at The University of Edinburgh

Summary

NERC

Small Manned & Unmanned Aircraft

SCIENCE OF THE

SAGES.

- Each have niche capabilities that supplement those of larger platforms
- In particular, smaller sensor packages can be well supported and flown economically, with great user control, over extended periods – within practical operating limitations
- Smaller doesn't necessarily mean easier!

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

SAGES

Platform Selection Considerations

End

Any Questions Please?

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Platform Selection Considerations

Extra Material...

Science and Engineering

at The University of Edinburgh

SAGES

Using Small Airborne Platforms

Platform Selection (1)

	Light Aircraft	Small UAS (< 20 kg)
Payload	Limited (typically < 100 kg)	VERY limited (100s g to a few kg)
Space	Limited (e.g. Dimona pod 30 x 60 x 80 cm)	VERY Limited (e.g. Explorer UAV 8 x 8 x 60 cm)
Power	Limited (e.g. Dimona ~ 900W)	VERY limited (e.g. a few W or 10s of W)
Flight Envelope	Largely unrestricted	Limited by regulations

Science and Engineering

at The University of Edinburgh

SAGES

Using Small Airborne Platforms

Platform Selection (2)

	Light Aircraft	Small UAS (< 20 kg)
Certification	Required	Usually NOT required
Sensor Environment	Very Challenging (wide & rapid changes in T, P, humidity; vibration; contamination)	Usually less challenging (limited flight envelope)
Crew Qualification	Commercial pilot license	Usually not required
Cost	Relatively high	Potentially VERY low

Science and Engineering

at The University of Edinburgh

SAGES

Using Small Airborne Platforms

Aircraft Selection – Sensor Considerations

	Light Aircraft	Small UAS (< 20 kg)
Payload	Limited (typically < 100 kg)	VERY limited (100s g to a few kg)
Space	Limited (e.g. Dimona pod 30 x 60 x 80 cm)	VERY Limited (e.g. Explorer UAV 8 x 8 x 60 cm)
Power	Limited (e.g. Dimona ~ 900W)	VERY limited (e.g. a few W or 10s of W)

Science and Engineering

at The University of Edinburgh

SAGES

Platform Selection Considerations

Science and Engineering

at The University of Edinburgh

SAGES

RPAS Sensors

Cameras & Laser range finder

- Sony A6000 24.3 Mp compact system camera (16 50 mm lens)
- 2 x Canon S110 12.1 Mp compact cameras
- Lightware SF10/C laser rangefinder (100 m, 1 cm res., 16 Hz)
- 2-Axis, 1-Axis gimbals

Science and Engineering

at The University of Edinburgh

RPAS Applications

Airborne

Initial Applications

- High resolution imagery / DTM, NERC GREENHOUSE fieldsites
- Proof of concept / R&D work, forest degradation mapping, African rainforest
- 'NDVI' mapping for agricultural applications (joint SRUC PhD)
- Proof of concept / R&D work, structural mapping in heavily crevassed zones
- Training for upcoming fieldwork

SAGES

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Instrumentation – Core Systems

Central Services Module

- Power conditioning and distribution
- Signal distribution/conditioning
- Air sample distribution
- HMI (custom MFD, switching)
- Automation (inc. Geo-fence logic)
- Core logging, control, network
- Synchronisation via GPS/NTP Time server
- Skyward sensor mount
- External connectivity

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Instrumentation – Core Systems

GeoSciences Airborne

Pod Modifications

- Ports
- Mounting infrastructure changes

Navigation – Alignment System

- INS / DGPS position, attitude, rates
- Laser Altimeter (range to surface)
- Mounting / alignment system for optical sensors
- Offset from pod axes to point to nadir in normal flight
- Serial and UDP real-time outputs

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Instrumentation – Measuring Systems

Measuring Systems

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Instrumentation – Measuring Systems

Met System

- **Turbulence** BAT probe with updated (NOAA) logging system (also logs other 'fast' sensors)
- **Humidity** modified chilled mirror hygrometer, RH sensor, Li7500
- **Temperature** -assorted custom fine wire TC, microbead thermistor, dedicated custom Total Air Temperature (TAT) probe*
- **Pressure** turbulence probe, custom pitot-static probe*
- Fast CO₂ Li7500 in custom housing, incorporates T & P sensors, co-located intakes for Picarro, humidity sensors and Tedlar bag system and 'one-stop' multi-sensor calibration
- **PAR** (up- and down-welling sensors) * May not be available for Greenhouse due to certification timing

Science and Engineering

at The University of Edinburgh

Instrumentation – Measuring Systems

Picarro G2301m Gas Analyser (CO₂, CH₄, H₂O)

- Environmentally controlled enclosure
- Local / remote intakes (co-located with Li7500 and Tedlar intake)
- Planned option to resample from Tedlar bags (e.g. in flight calibrations)
- Dual redundant remote data-logging
- Remote monitoring and control over RDP
 Synchronised via NTP

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Instrumentation – Measuring Systems

Ortho-Photography System

• Canon EOS5D DSLR

GeoSciences

Airborne

- Rigidly mounted to Nav-Alignment System
- Remote control and automation via Central Services Module
- Precise mid-exposure pulse logging against navigation data*
- Camera upgrade if time / funds permit

* May not be available for Greenhouse

Kevo, N. Finland, Aerial Photography & derived vegetation map, ~ 4cm res. (Tim Hill)

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Instrumentation – Measuring Systems

Hyperspectral Imaging System

- NEO Hyspex VNIR 1600
- Rigidly mounted to INS/DGPS
- Supporting equipment on removable shelf in rear cabin
- Remote control and automation via CSM
- Synchronised to INS/DGPS
- Simultaneous irradiance measurement

Science and Engineering

at The University of Edinburgh

Instrumentation – Measuring Systems

Tedlar Bag System

JeoSciences

Airborne

- ~ 50 x1 litre samples in 3 litre bags
- Variable fill rate from ~ 4-5 s to 5 mins
- Multiple simultaneous samples if required
- In-situ re-analysis by Picarro if required
- Remote control and automation via Central Services Module
- Precise timing and logging via synchronised data-logger
- Removable shelf in rear cabin
- Analysis TBC; have approached FAAN

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Instrumentation – Supporting Systems

Airside Support Unit

- External power supply, network and IC
- Embedded PC for remote access
- Large volume data transfer / management via hot-swap drives
- Local backup via internal RAID array

Workstation

- High performance workstation, custom built for data management /processing
- Local data archiving on redundant hotswap drives
- Transportable rugged case

Science and Engineering

at The University of Edinburgh

Remotely Piloted Aircraft Systems (RPAS)

RPAS within Airborne GeoSciences

SAGES.

- New capability for facility, in place by late spring 2015
- Fixed-wing and multi-rotor platforms
- Builds upon existing multi-rotor capability within School
- Facility aims to provide:
 - Training and standards for School RPAS operations
 - Supported field operations (i.e. with crew)
 - Equipment / skills for independent field operations
 - Core skills and knowledge-base
 - Support for teaching / student projects etc
 - R & D, proof of concept work supporting proposals

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Remotely Piloted Aircraft Systems (RPAS)

Why RPAS?

- Potentially higher resolution photoimagery and DTM (1-2 cm)
- More economic for small spatial scales, high temporal frequency measurements
- Suitable for independent operation in remote places
- Small systems don't need certification
- 'Dull / Dirty / Dangerous' operations

SAGES

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Remotely Piloted Aircraft Systems (RPAS)

RPAS Limitations

- Small spatial scales (regulatory (<500m) & technical reasons)
- Low payload narrow capability, possibly low quality sensors
- Questionable reliability hence low cost sensors, limited quality

SAGES

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

RPAS Platforms

Bormatec UAV Explorer

- Main fixed wing survey platforms
- Payload ~ 2.5 kg

Airborne GeoSciences

- Endurance ~ $45 \min(+)$
- Highly / fully automated flight
- 2 aircraft for redundancy / fast turn around

SAGES

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

RPAS Platforms

Tarot FY680 Pro Hexacopter

- Multi-rotor training / survey platform
- Payload ~ 1.2 kg

Airborne GeoSciences

- Endurance ~ 15 mins
- Highly / fully automated flight
- Very useful where space is restricted, but spatial coverage is compromised
- Good for radiometric work where hovering allows longer integration times

SAGES

Science and Engineering

at The University of Edinburgh

SAGES

RPAS Sensors

Cameras & Laser range finder

- Sony A6000 24.3 Mp compact system camera (16 -50 mm lens)
- 2 x Canon S110 12.1 Mp compact cameras
- (2 x Mobius HD cameras modified for NDVI)
- Lightware SF10/C laser rangefinder (100 m, 1 cm res., 16 Hz)
- 2-Axis, 1-Axis gimbals

Science and Engineering

at The University of Edinburgh

RPAS Applications

Airborne

Initial Applications

- High resolution imagery / DTM, NERC GREENHOUSE fieldsites
- Proof of concept / R&D work, forest degradation mapping, African rainforest
- 'NDVI' mapping for agricultural applications (joint SRUC PhD)
- Proof of concept / R&D work, structural mapping in heavily crevassed zones
- Training for upcoming fieldwork

SAGES

Science and Engineering

at The University of Edinburgh

SAGES

Instrumentation – Supporting Systems

Calibration Equipment

- High quality reference systems T, P_{abs} , P_{diff} , uV, humidity
- 'Portable' cylinder rack for gases if needed
- Bench and field deployable

Environmental Test Chamber

- 0.8 x 3 m chamber, -20 to +40C, ~+/- 2C per minute
- Optionally pressure controlled ~ 600hPa 1050 hPa

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Methodology – Airborne EC

'Basic' Airborne EC

- E.g. Sarrat et al 2009
- Spatially contiguous averaging
- Many approaches in the literature
- No accepted 'standard' approach
- But some groupings around similar initial processing

Modelled vs Aircraft Obs fluxes, CERES

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

CREDINBURGE

Methodology – Airborne EC

Wavelet techniques

- E.g. Mauder et al 2008
- Wavelet flux calculation at 100m scale, but noisy,
- Multiple error correction steps and averaging
- 3 km gridded map produced
- Quite complex

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Methodology – Airborne EC

Flux Fragmentation Method

- E.g. Kirby et al 2008
- Bin 1s 'flux fragments' according to land-class (e.g. maize / soybean) within footprint
- Average within the land-class

Fig. 7 – FFM maize vs tower-based maize CO₂ flux measurements.

Science and Engineering

at The University of Edinburgh

Instrumentation – Measuring Systems

Tedlar Bag System

JeoSciences

Airborne

- ~ 50 x1 litre samples in 3 litre bags
- Variable fill rate from ~ 4-5 s to 5 mins
- Multiple simultaneous samples if required
- In-situ re-analysis by Picarro if required
- Remote control and automation via Central Services Module
- Precise timing and logging via synchronised data-logger
- Removable shelf in rear cabin
- Analysis TBC; have approached FAAN

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Instrumentation – Supporting Systems

Airside Support Unit

- External power supply, network and IC
- Embedded PC for remote access
- Large volume data transfer / management via hot-swap drives
- Local backup via internal RAID array

Workstation

- High performance workstation, custom built for data management /processing
- Local data archiving on redundant hotswap drives
- Transportable rugged case

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Methodology – Airborne EC

Lengths, levels, terrain, land class etc Airspace, habitation, hazards, regs P distribution, T, Humidity - Flow angles and velocity Probe position, attitude, velocities Scalars (CO₂, CH₄, H₂O, T,) Dynamic effects, flow distortion etc. Various methods available Sampling statistics critical Low/high freq. losses, biases E.g. divergence (plan implications) Footprint model Analyse against geospatial data Model outputs, EO, LCM etc

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

SAGES

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Methodology – Mass Balance Technique

- E.g Alfieri et al. 2010
- Measure advective fluxes through side walls of a volume (various levels & interpolate)
- Model entrainment flux across PBL top (or we could measure top surface fluxes by EC)
- Surface flux accounts for the remainder
- Better for inhabited areas
- Possibility of using Tedlar samples for N₂O

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Methodology – Mass Balance Technique

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

SAGES

Methodology – Progress

<u>General</u>

- a) Discussed in broad terms but details not laid down
- b) Rob has reviewed some aspects of the basic EC and mass balance techniques and written up a technical note on the subject

Flux Processing / Analysis tools

- a) Some historic code available, but never truly 'operational' and needs to be updated due hardware and logging changes
- b) Many areas not covered here at all and need development from scratch (e.g. divergence, mass balance, wavelet/FFM techniques)
- c) Turbulence probe calibrations/ corrections need review and development

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

SAGES

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

ECO-Dimona Instrumentation

Central Services Module

- Power & signal distribution, logging
- Air sample distribution
- HMI (custom MFD, switching) & Automation
- Synchronisation via GPS/NTP Time server

Navigation – Alignment System

- INS / DGPS position, attitude, rates
- Laser Altimeter (range to surface)
- Mounting / alignment system for optical sensors

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

ECO-Dimona Instrumentation

Met System

- **Turbulence** BAT probe with updated (NOAA) logging system (also logs other 'fast' sensors)
- **Humidity** modified chilled mirror hygrometer, RH sensor, Li7500
- **Temperature** -assorted custom fine wire TC, microbead thermistor, dedicated custom Total Air Temperature (TAT) probe*
- **Pressure** turbulence probe, custom pitot-static probe*
- Fast CO₂ Li7500 in custom housing, incorporates T & P sensors, co-located intakes for Picarro, humidity sensors and Tedlar bag system and 'one-stop' multi-sensor calibration
- **PAR** (up- and down-welling sensors) * May not be available for Greenhouse due to certification timing

Science and Engineering

at The University of Edinburgh

ECO-Dimona Instrumentation

Picarro G2301m Gas Analyser (CO₂, CH₄, H₂O)

- Environmentally controlled enclosure
- Local / remote intakes (co-located with Li7500 and Tedlar intake)
- Planned option to resample from Tedlar bags (e.g. in flight calibrations)
- Dual redundant remote data-logging
- Remote monitoring and control over RDP
 Synchronised via NTP

Science and Engineering

at The University of Edinburgh

Applications – Met and Picarro Systems

- 1. Airborne Eddy Covariance
- Low level flight path
- Measure fluxes via EC
- Fast in-situ measurements (CO₂, CH₄, T, humidity, W)
- No N₂O, restrictions level
- 2. <u>Mass Balance Technique</u>
- Measure fluxes through side walls
- Model (or measure) fluxes through top (e.g. PBL top)
- Estimate surface flux
- May be possible to use Tedlar bags for N₂O, avoids restrictions

Science and Engineering

at The University of Edinburgh

Planning – Flight Planning

Experimental Flight Planning

- a) Discussed in broad terms but specifics not laid down
- b) Will need a set of 'missions' to be specified, each with:
 - i. A priority level
 - ii. Waypoints / route / altitudes /repetitions
 - iii. Sampling requirements, data marker codes
 - iv. Weather constraints, other dependencies etc.
- c) Pre-campaign:
 - i. Waypoints, routes etc. will be uploaded to nav. systems
 - ii. Sampling requirements coded into automation systems and tested via simulator
 - iii. Briefing cards / in-flight reference documents drawn up
 - iv. Arrange notifications / permissions as required

Science and Engineering

at The University of Edinburgh

Planning – Campaign Planning

Campaign Planning & Training

- a) Discussed in broad terms but specifics not laid down
- b) Aim to adopt a flexible approach as far as possible due:
 - i. Weather limitations
 - ii. Uncertainties regarding staff availability
 - iii. Residual risks e.g. certification and serviceability
- c) Identify suitable windows for activity at each site
 - i. To address specific seasonal science questions
 - ii. To link with other GREENHOUSE activity
 - iii. To link with GUAGE activity (meeting 27 Feb)
- d) Staff / crew still to be identified and trained

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Planning – Campaign Planning

Lincolnshire

- a) 9 x 2.5 hr flights
- b) Base Gamston, fall-back Cranfield

Science and Engineering

at The University of Edinburgh

The University of Edinburgh

Planning – Campaign Planning

Northern

- a) 9 x 2.5 hr flights
- b) Base Fife, with Carlisle for local support

Science and Engineering

at The University of Edinburgh