

Daedalus:

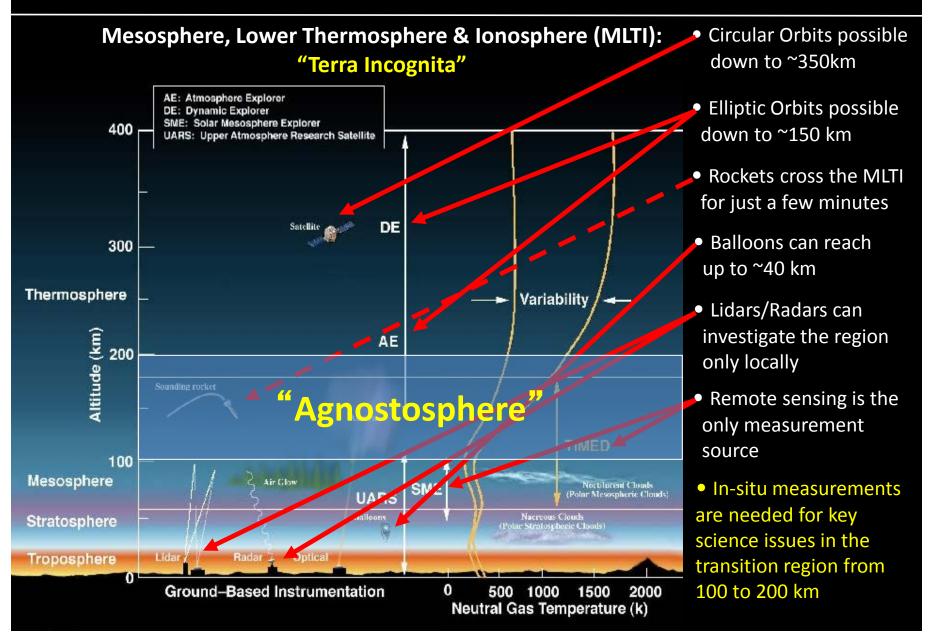
A Low-Flying Spacecraft for the Exploration of the Lower Thermosphere - Ionosphere

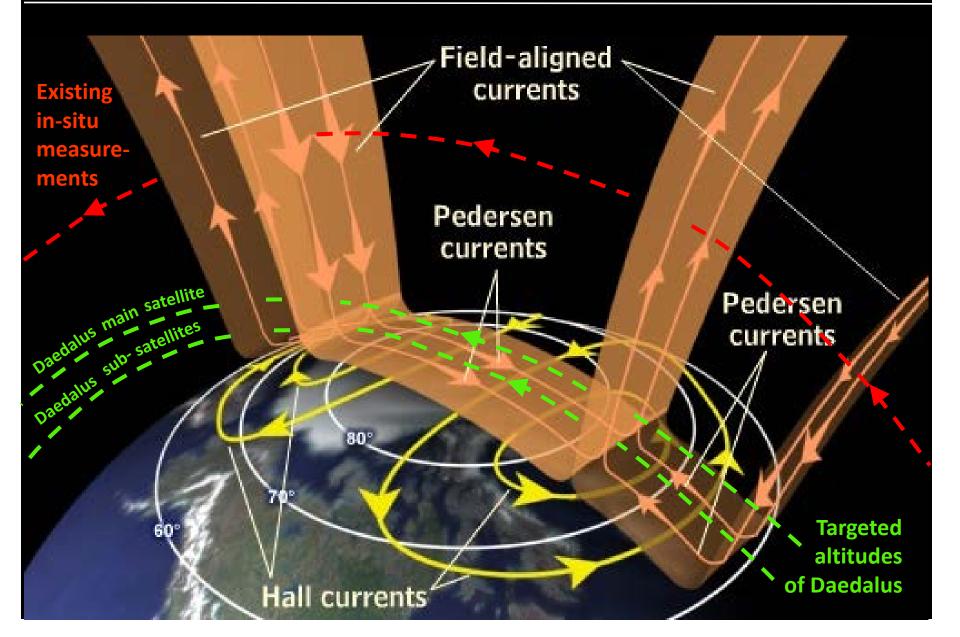
A candidate for ESA's 10th Earth Explorer

Introduction

was initiated under the ESA-Greece Task Force initiative, at feasibility study level

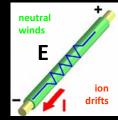
- it has derived the performance requirements, specifications, preliminary design and development plan for a Low-Flying Spacecraft
- it has been submitted to ESA's Earth Observation Earth Explorer programme and is one of the three candidates for the 10th Earth Explorer
- It is currently undergoing a Phase-0 study for Mission Definition and Needs Identification

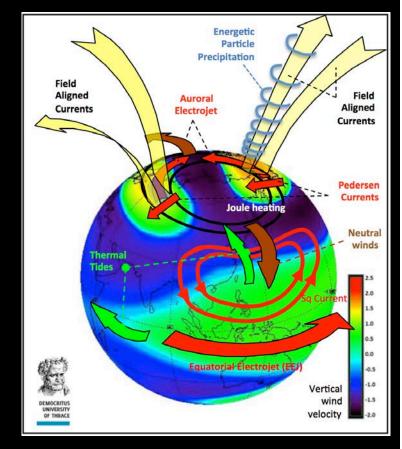

Proposing Team



OF THRACE

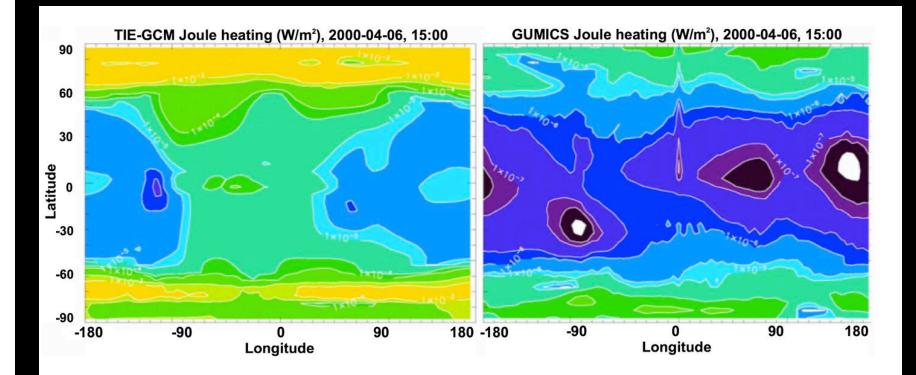
Name	Affiliation	Country Greece
Sarris, Theodoros	Democritus University of Thrace, lead institution	
Aikio, Anita	Ionospheric Physics Unit, University of Oulu	Finland
Armandillo, Errico	Space Engineering Consultant	Netherlands
Belehaki, Anna	National Observatory of Athens	Greece
Buchert, Stephan	Swedish Institute of Space Physics	Sweden
Clilverd, Mark	British Antarctic Survey	UK
Cully, Christopher	University of Calgary	Canada
Dandouras, Iannis	IRAP, CNRS & Université de Toulouse	France
Halekas, Jasper	University of Iowa	USA
Jaynes, Allison	University of Iowa	USA
Kervalishvili, Guram	GFZ German Research Centre for Geosciences	Germany
Kourtidis, Konstantinos	Democritus University of Thrace	Greece
Lappas, Vaios	ATHENA Research & Innovation Centre	Greece
Malaspina, David	LASP, University of Colorado	USA
Palmroth, Minna	University of Helsinki	Finland
Paschalidis, Nikolaos	Goddard Space Flight Center, NASA	USA
Sample, John	Montana State University	USA
Sandberg, Ingmar	SPARC G.P.	Greece
Wu, Qian	High Altitude Observatory, NCAR	USA


Participants from 9 countries, 17 entities



A. Heating processes and energy balance in the MLTI

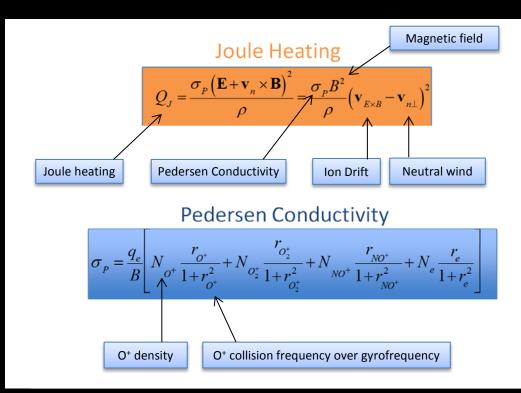
- Q1: What is the energy that is deposited into the MLTI via Joule heating and Particle Precipitation and how exactly does it affect the dynamics and the thermal structure of the MLTI?
- Q2: What processes control momentum and energy transport and distribution in the transition region, at 100-200 km altitude range in the high-latitude region?
 - Estimates of Joule (ohmic) heating of the thermosphere require simultaneous measurements of:
 - a) Ion drifts
 - b) Neutral winds
 - c) Electric field
 - d) Magnetic field
 - e) Composition



Overview of main processes affecting momentum and energy transport and distribution in the MLTI.

A. Heating processes and energy balance in the MLTI

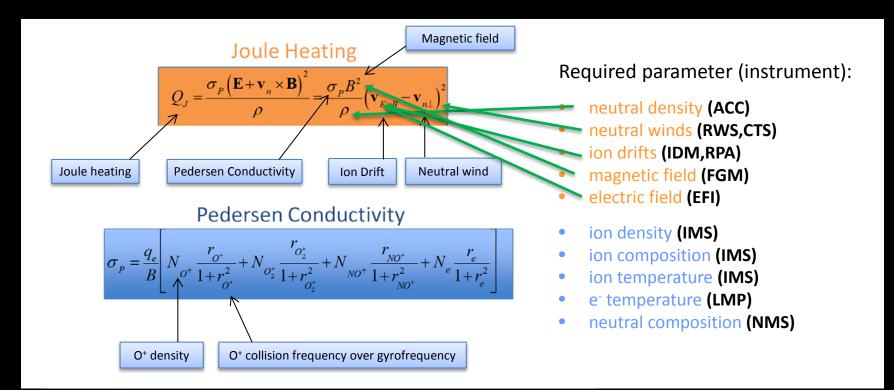
Justification: Estimates of key heating processes, such as Joule heating, currently vary by a large fraction between models (up to 500% at times and at locations)


Comparison of Joule Heating between models, as a function of latitude and longitude:

A. Heating processes and energy balance in the MLTI

Justification: Estimates of key heating processes, such as Joule heating, currently vary by a large fraction between models (up to 500% at times and at locations)

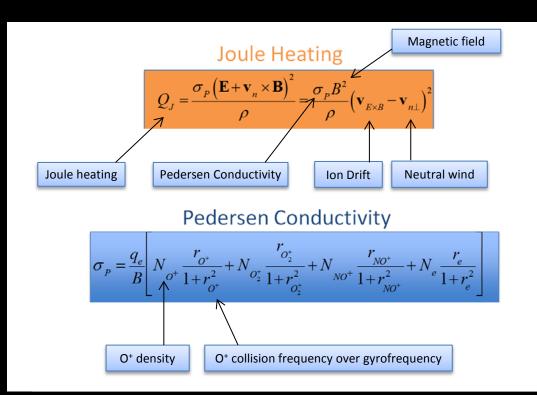
Required parameters and instrumentation for Joule Heating estimates:


Required parameter (instrument):

- neutral density (ACC)
- neutral winds (RWS,CTS)
- ion drifts (IDM,RPA)
- magnetic field (FGM)
- electric field (EFI)
- ion density (IMS)
- ion composition (IMS)
- ion temperature (IMS)
- e⁻ temperature (LMP)
- neutral composition (NMS)

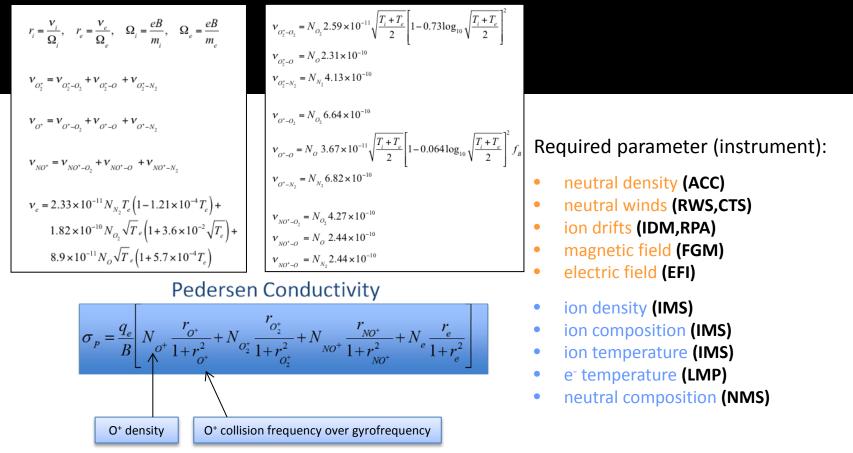
A. Heating processes and energy balance in the MLTI

Justification: Estimates of key heating processes, such as Joule heating, currently vary by a large fraction between models (up to 500% at times and at locations)

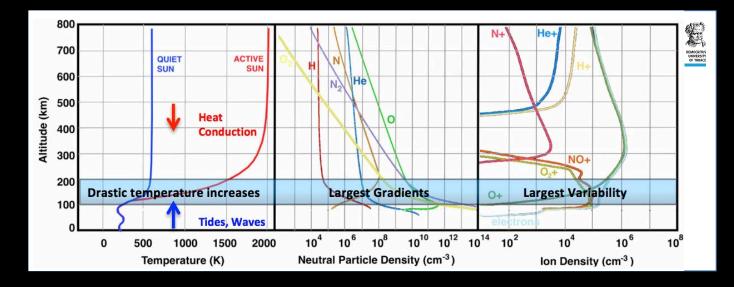

Required parameters and instrumentation for Joule Heating estimates:

A. Heating processes and energy balance in the MLTI

Justification: Estimates of key heating processes, such as Joule heating, currently vary by a large fraction between models (up to 500% at times and at locations)


Required parameters and instrumentation for Joule Heating estimates:

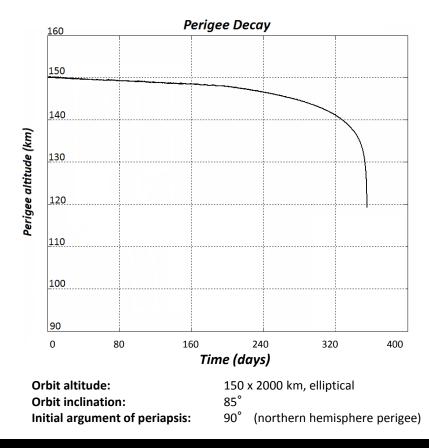
		-	
ID	INSTRUMENT	VARIABLES	
IDM Ion Drift Meter		Cross-track ion drifts	
RPA	Retarding Potential Analyzer	Along-track Ion Drifts Vertical Ion Drifts Ion Temperature	
RWS	Ram Wind Sensor	Along-track neutral wind	
cws	Cross-track Wind Sensor	Cross-track neutral winds	
IMS	lon Mass Spectrometer	lon density lon composition	
NMS	Neutral Mass Spectrometer	Neutral density Neutral winds Neutral Temperature N ₂ , O, O ₂ , NO	
ACC	Accelerometer	Cross-track neutral winds Neutral density	
EPDS Energetic Pre Particle Pre Detector Suite Energy Electric Eield		Precipitating e Precipitating p ⁺ Energetic Neutral Atoms	
		Electric Fields	
MIP or LP	Mutual Impe- dance Probe or Langmuir Probe	Electron Temperature	
MAG Magnetometer		Magnetic Fields Currents	
GNS	GNSS Receiver	Electron density	


A. Heating processes and energy balance in the MLTI

Justification: Estimates of key heating processes, such as Joule heating, currently vary by a large fraction between models (up to 500% at times and at locations)

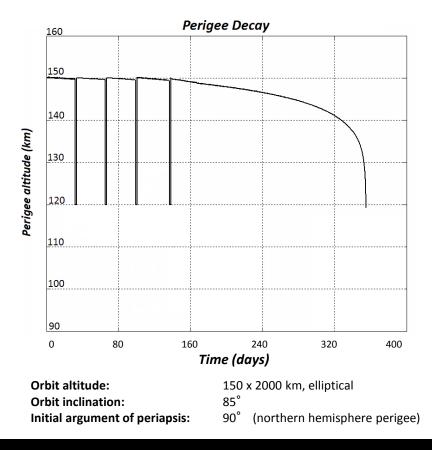
B. Variations in the MLTI temperature & composition structure

- Q3: What are the spatial-temporal variations in density, composition and temperature of the neutral atmosphere and ionosphere at altitudes of 100-200 km altitude, with respect to solar activity?
- **Q4:** What is the relative importance of the equatorial dynamo in driving the low latitude ionosphere and how do ions and neutrals couple in the low latitude ionosphere and thermosphere?
- **Q5:** What is the MLTI region's role as a boundary condition to the exosphere above and stratosphere below and how does it affect their energetics and dynamics?



Part A - Measurements in the lower thermosphere down to 150 km:

Best realized by a spacecraft in elliptical orbit with perigee 150 km, apogee > 2000 km



Part B - Measurements through the "Agnostosphere" down to 120 km:

Can be accomplished by performing episodic descents to lower altitudes, by use of propulsion

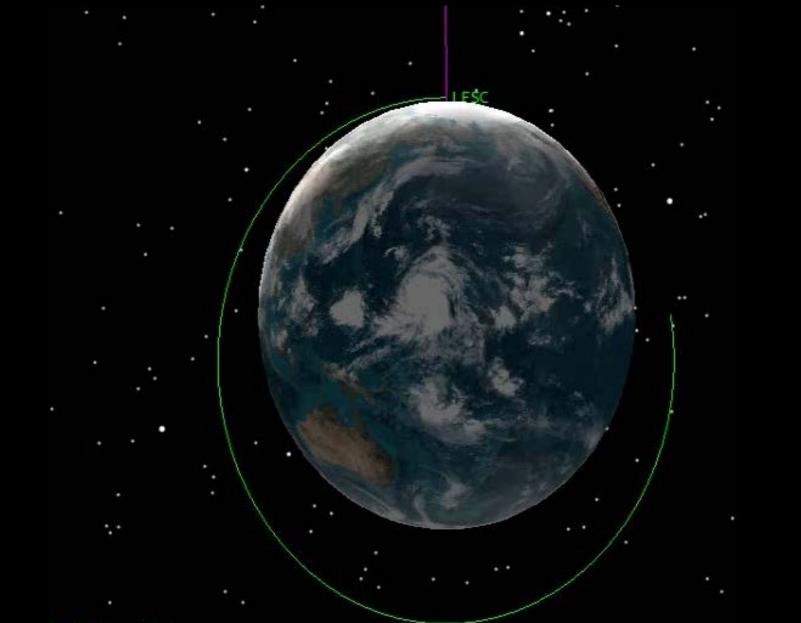
Part C - Simultaneous second-point measurements below 120 km:

160

150

140

Can be accomplished by releasing expendable, miniaturized sub-satellites from the main satellite

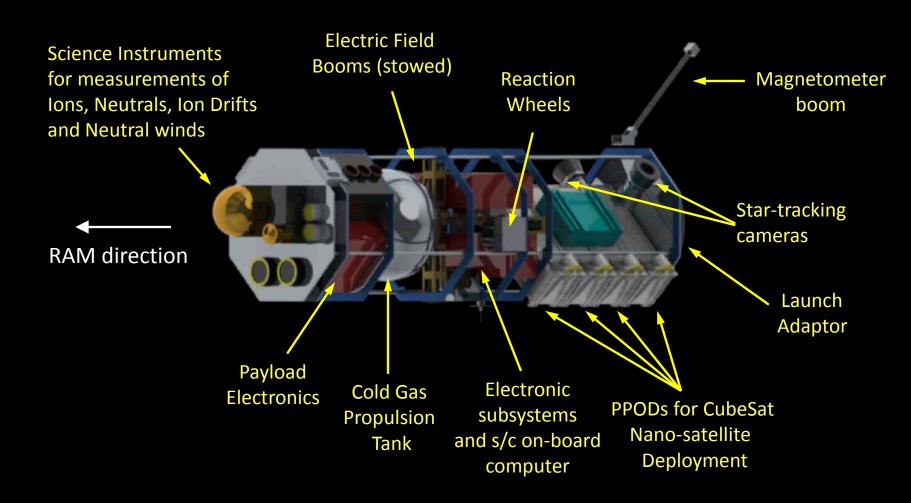


Perigee altitude (km) 130 120 110 100 90 0 80 160 240 320 400 Time (days) **Orbit altitude:** 150 x 2000 km, elliptical **Orbit inclination:** 85° 90° (northern hemisphere perigee) Initial argument of periapsis:

Perigee Decay

Daedalus Orbital Design

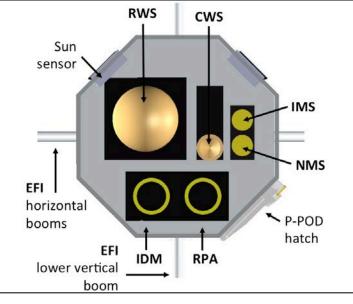

Daedalus Spacecraft Design


Daedalus Spacecraft Design

Overview of main s/c subsystems

Daedalus Spacecraft Design

Daedalus with Deployed Electric Field Booms

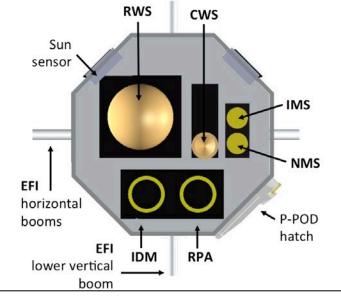


Daedalus Main Satellite Payload

Instrument	Measurement	
ion Drift Meter & Retarding Potential Analyzer [M]	lon drifts, ion density	
RAM Wind Sensor & Cross- Track Wind Sensor [M]	Neutral winds – Diff. pressure Ion & Neutral Composition Neutral density	
Ion & Neutral Mass Spectrometers [M&S]		
Accelerometer [M&S]		
Energetic Particle Detector Suite [M&S]	Precipitating particles	
Electric Field Instrument [M&S]	Electric fields, electron density	
Langmuir Probe [M&S]	Electron temperature	
Magnetometer [M&S]	Magnetic fields	
	Total Electron Content	

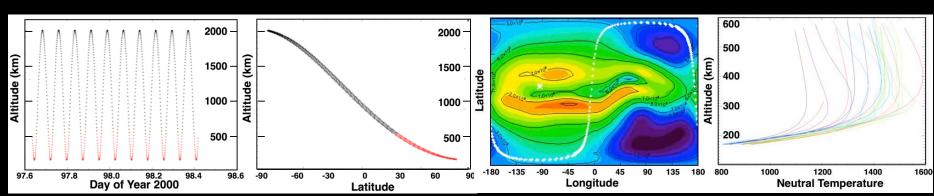
M: Main Satellite, S: Sub-satellite

Daedalus ram direction instrumentation



Daedalus Main Satellite Payload

Instrument	Measurement	
Ion Drift Meter & Retarding Potential Analyzer [M]	lon drifts, ion density	
RAM Wind Sensor & Cross- Track Wind Sensor [M]	Neutral winds – Diff. pressure	
Ion & Neutral Mass Spectrometers [M&S]	Ion & Neutral Composition	
Accelerometer [M&S]	Neutral density	
Energetic Particle Detector Suite [M&S]	Precipitating particles	
Electric Field Instrument [M&S]	Electric fields, electron density	
Langmuir Probe [M&S]	Electron temperature	
Magnetometer [M&S]	Magnetic fields	
GNSS Receiver [M]	Total Electron Content	


List of Daedalus instruments and measurements

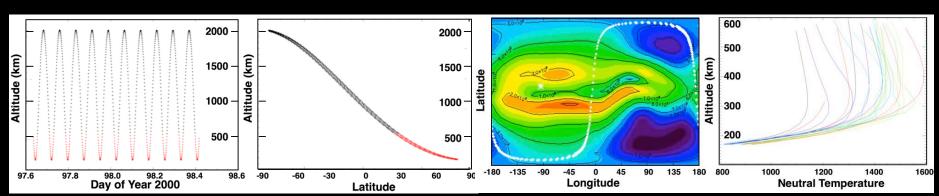
M: Main Satellite, S: Sub-satellite

Daedalus ram direction instrumentation

Simulated sampling of the "Ignorosphere" and Joule Heating estimations

Daedalus Main Satellite Payload

Instrument	Measurement
Ion Drift Meter & Retarding Potential Analyzer [M]	lon drifts, ion density
RAM Wind Sensor & Cross- Track Wind Sensor [M]	Neutral winds – Diff. pressure
Ion & Neutral Mass Spectrometers [M&S]	Ion & Neutral Composition
Accelerometer [M&S]	Neutral density
Energetic Particle Detector Suite [M&S]	Precipitating particles
Electric Field Instrument [M&S]	Electric fields, electron density
Langmuir Probe [M&S]	Electron temperature
Magnetometer [M&S]	Magnetic fields
GNSS Receiver [M]	Total Electron Content


TRL	Heritage	Required Development
TRL 6	DE, DMSP, C/NOFS, Swarm	Adjustment of Dynamic Range
TRL 5-6	Many; C/NOFS	Adjustment of Dynamic Range
TRL 5-6	AE, Bepii-Colombo	Adjustment of Dynamic Range
TRL 9	CHAMP, GRACE, Swarm	Identical to heritage missions
TRL 6	Many; HEI: VAP/REPT; LEI: rockets	Adjustment of Dynamic Range
TRL 6	MMS, MAVEN, Parker Solar Probe, DEMETER	Many aspects of the electronics stay the same. Heritage boom systems will be used.
TRL 9	Roseta/RPC, Swarm	Identical to heritage missions
TRL 9	Many; Swarm	Identical to heritage missions
TRL 9	CHAMP, COSMIC, Swarm	Identical to heritage missions

List of Daedalus instruments and measurements

M: Main Satellite, S: Sub-satellite

Daedalus instrumentation heritage and required development

Simulated sampling of the "Ignorosphere" and Joule Heating estimations

Next Steps

- Daedalus is one of three mission ideas
 that have been selected as candidates for
 ESA's 10th Earth Explorer; all three will undergo a
 Phase-0 study (Mission Analysis/needs identification).
 - At the end of Phase-0, each concept will be assessed and the Earth Science Advisory Committee (ESAC) will recommend the two highest ranked concepts to proceed to a Phase-A (Feasibility) study.
- At the end of Phase A, one of the three missions will proceed for full implementation (Phases B/C/D/E1), based on demonstration that the mission respects all the necessary conditions, supported by a public User Consultation Meeting (UCM) and scientific peer-review under the auspices of ESAC.

Perigee

LFSC

Traceability Matrix

UNI	CRITUS

Science Questions	Measurement Objectives
Question 1 What is the energy that is deposited into the MLTI via Joule heating and Energetic Particle Precipitation (EPP) and how does it affect the dynamics and thermal structure of the MLTI?	Measure the – neutral winds – ion drifts – neutral and ion temperatures – neutral and ion densities – electric fields – magnetic fields
Question 2 What are the spatial- temporal variations in density, composition and temperature at altitudes of 100-200 km, with respect to space weather events	Measure the – winds – drifts – temperatures – densities – particle precipitation
Question 3 What processes control momentum and energy transport and distribution in the transition region, at 100-200 km altitude in the high-latitude region?	Measure: - O, O ₂ , N ₂ , - NO, CO ₂ - temperature - O [*] , N ₂ [*] , O ₂ [*] , - NO [*]
Question 4 What is the relative importance of the equatorial dynamo in driving the low latitude ionosphere and how do ions-neutrals couple in the low latitude iono- sphere - thermosphere?	Measure: – densities – temperature – electric fields – magnetic fields
Question 5 What is the MLTI region's role as a boundary condition to the exosphere above and stratosphere below and how does it affect their energetics and dynamics?	Measure: - densities - temperature - electric fields - magnetic fields - O, O ₂ , N ₂ , NO, CO ₂ - O', N ₂ ⁺ , O ₂ ⁺ , NO ⁺

A. Heating in the MLTI

B. Structure of the MLTI

		Science Results		
	Instrument	Measurement	Mission and Spacecraft	
_	Description	Requirements	Requirements	First systematic,
Q3 Q4	Ion Drift Meter Retarding Potential	RWS / CWS / LP - Measurements below 200 km - Ion drifts - vertical: < 3 m/s - horizontal: < 20 m/s - Along track winds < 20 m/s - Electron density < 300 cm ⁻³ - Ion Temperature - Electron Temperature - Neutral Density < 20% - Relative density perturb. < 2% - Cross track winds < 20 m/s - Sensitivity: 10 ⁻⁷ g, - Dynamic range: 10 ⁻⁷ g at 500 km	 High-inclination, dipping orbit Optical bench for alignment ±1km altitude registration RAM direction Pointing knowl. error < 0.03" IFOV +/- 45" Common electronics box ½ scale height vert. resolution High-inclination, dipping orbit Near CoG 	simultaneous measurement of Joule heating and EPP, leading to unambiguous MLTI heating estimates under varying conditions. First systematic, simultaneous measurement of key dynamical and energetic parameters in this region leading to quantification of relative factors.
Q5		10 ⁻³ g at 120 km		
Q1 Q4 Q5	EFI Electric Field Instrument	– Measurements below 500 km – AC (>10 Hz) – DC electric Fields	 – 6 vector booms from s/c: – 4 horizontal booms in X formation in the along-cross- track plane – 2 vertical booms 	New constituent information by which first principle models may be validated against.
Q1 Q2 Q5	EPDS Energetic Particle Detector Suite	– proton precipitation 30-800 keV – electron precip. 100 eV-800 keV – ENA precipitation 5 keV-200 keV	– Top of spacecraft – Clear FOV	Measurements to complement and contextualize recent low-latitude discoveries.
Q1 Q4 Q5	MAG Magnetometer	– Currents via magnetic field perturbations	 High-inclination, dipping orbit May need to be on boom Cleanliness to 2 nT 	
Q1 Q3 Q5	NMS Neutral Mass Spectrometer	 Neutral composition < 10% Temperature < 10% 	– Ram direction – Outside standoff area – IFOV 5°x10°	New measurements that can be used by lower atmosphere models as well as magnetospheric models as boundary conditions.

Table 5: Traceability Matrix from Science Questions to Results

- End of presentation -